Asumsi rata-rata bergerak

Asumsi rata-rata bergerak

Scottrade-trade-options-in-ira
Kathy-lien-double-bollinger-band-strategy
Kauffmann-stock-options


Stock-options-if-company-is-buying T-3-trading-system Interaktif-broker-options-tutorial Vladimir-forex-forecast Option-trading-course-in-pune Optionshouse-trade-cycle

Analisis Teknis: Moving Averages Sebagian besar pola grafik menunjukkan banyak variasi pergerakan harga. Hal ini bisa menyulitkan para pedagang untuk mendapatkan ide tentang keseluruhan tren keamanan. Salah satu metode sederhana yang digunakan trader untuk memerangi ini adalah dengan menerapkan moving averages. Rata-rata bergerak adalah harga rata-rata keamanan selama jangka waktu tertentu. Dengan merencanakan harga rata-rata keamanan, pergerakan harga merapikan. Begitu fluktuasi sehari-hari dilepaskan, para pedagang lebih mampu mengidentifikasi tren sebenarnya dan meningkatkan kemungkinan bahwa hal itu akan menguntungkan mereka. (Untuk mempelajari lebih lanjut, baca tutorial Moving Averages.) Jenis Rata-rata Bergerak Ada sejumlah jenis rata-rata bergerak yang bervariasi menurut cara perhitungannya, namun rata-rata rata-rata diinterpretasikan tetap sama. Perhitungan hanya berbeda dalam hal pembobotan yang mereka tempatkan pada data harga, bergeser dari bobot masing-masing titik harga menjadi bobot yang lebih besar pada data terakhir. Tiga jenis moving average yang paling umum adalah sederhana. Linear dan eksponensial. Simple Moving Average (SMA) Ini adalah metode yang paling umum digunakan untuk menghitung moving average harga. Ini hanya mengambil jumlah dari semua harga penutupan terakhir selama periode waktu dan membagi hasilnya dengan jumlah harga yang digunakan dalam perhitungan. Misalnya, dalam rata-rata pergerakan 10 hari, 10 harga penutupan terakhir ditambahkan bersama-sama dan kemudian dibagi dengan 10. Seperti yang dapat Anda lihat pada Gambar 1, trader mampu membuat rata-rata kurang responsif terhadap perubahan harga dengan meningkatkan jumlah Dari periode yang digunakan dalam perhitungan. Meningkatnya jumlah periode waktu dalam perhitungan adalah salah satu cara terbaik untuk mengukur kekuatan tren jangka panjang dan kemungkinan akan membalikkan. Banyak orang berpendapat bahwa kegunaan jenis rata-rata ini terbatas karena setiap titik dalam rangkaian data memiliki dampak yang sama terhadap hasilnya terlepas dari mana yang terjadi dalam urutan. Para kritikus berpendapat bahwa data terbaru lebih penting dan, oleh karena itu, seharusnya juga memiliki bobot yang lebih tinggi. Jenis kritik ini telah menjadi salah satu faktor utama yang menyebabkan penemuan bentuk rata-rata bergerak lainnya. Rata-rata Tertimbang Linear Indikator rata-rata bergerak ini adalah yang paling tidak biasa dari ketiganya dan digunakan untuk mengatasi masalah bobot yang sama. Rata-rata bergerak tertimbang linear dihitung dengan mengambil jumlah semua harga penutupan selama periode waktu tertentu dan mengalikannya dengan posisi titik data dan kemudian membagi dengan jumlah jumlah periode. Misalnya, dalam rata-rata tertimbang lima hari rata-rata, harga penutupan hari ini dikalikan lima, kemarin empat dan seterusnya sampai hari pertama dalam rentang periode tercapai. Angka-angka ini kemudian ditambahkan bersama-sama dan dibagi dengan jumlah pengganda. Exponential Moving Average (EMA) Perhitungan rata-rata bergerak ini menggunakan faktor pemulusan untuk menempatkan bobot yang lebih tinggi pada titik data terkini dan dianggap jauh lebih efisien daripada rata-rata tertimbang linear. Memiliki pemahaman tentang perhitungan umumnya tidak diperlukan bagi kebanyakan trader karena kebanyakan charting package melakukan perhitungan untuk Anda. Hal yang paling penting untuk diingat tentang rata-rata pergerakan eksponensial adalah bahwa hal itu lebih responsif terhadap informasi baru dibandingkan dengan rata-rata pergerakan sederhana. Responsivitas ini merupakan salah satu faktor kunci mengapa ini adalah rata-rata pilihan bergerak di antara banyak pedagang teknis. Seperti yang dapat Anda lihat pada Gambar 2, EMA 15 periode naik dan turun lebih cepat dari SMA 15 periode. Perbedaan kecil ini sepertinya tidak terlalu banyak, tapi ini adalah faktor penting yang harus diperhatikan karena dapat mempengaruhi tingkat pengembalian. Kegunaan Besar Rata-rata Bergerak Rata-rata bergerak digunakan untuk mengidentifikasi tren saat ini dan pembalikan tren serta untuk menetapkan level support dan resistance. Moving averages dapat digunakan untuk mengidentifikasi dengan cepat apakah keamanan bergerak dalam uptrend atau downtrend tergantung pada arah moving average. Seperti yang dapat Anda lihat pada Gambar 3, ketika rata-rata bergerak menuju ke atas dan harganya di atas, keamanan berada dalam tren naik. Sebaliknya, rata-rata bergerak miring ke bawah dengan harga di bawah ini bisa digunakan untuk memberi sinyal tren turun. Metode lain untuk menentukan momentum adalah dengan melihat urutan rata-rata bergerak. Bila rata-rata jangka pendek di atas rata-rata jangka panjang, trennya naik. Di sisi lain, rata-rata jangka panjang di atas rata-rata jangka pendek menandakan pergerakan turun dalam tren. Moving average trend reversals terbentuk dalam dua cara utama: ketika harga bergerak melalui moving average dan ketika bergerak melalui moving average crossover. Sinyal umum pertama adalah ketika harga bergerak melalui moving average yang penting. Misalnya, ketika harga sebuah keamanan yang berada dalam tren naik turun di bawah rata-rata pergerakan 50 periode, seperti pada Gambar 4, ini adalah tanda bahwa tren kenaikan harga mungkin berbalik arah. Sinyal lain dari pembalikan tren adalah ketika satu moving average melewati yang lain. Misalnya, seperti yang dapat Anda lihat pada Gambar 5, jika rata-rata pergerakan 15 hari di atas rata-rata pergerakan 50 hari, ini adalah tanda positif bahwa harga akan mulai meningkat. Jika periode yang digunakan dalam perhitungan relatif pendek, misalnya 15 dan 35, ini bisa menandakan pembalikan tren jangka pendek. Di sisi lain, ketika dua rata-rata dengan kerangka waktu yang relatif lama menyeberang (50 dan 200, misalnya), ini digunakan untuk menyarankan pergeseran jangka panjang dalam tren. Cara lain untuk memindahkan rata-rata yang digunakan adalah mengidentifikasi level support dan resistance. Hal ini tidak biasa untuk melihat saham yang telah jatuh menghentikan penurunan dan arah sebaliknya setelah menyentuh support dari moving average utama. Pergerakan melalui moving average utama sering digunakan sebagai sinyal oleh trader teknik bahwa tren membalikkan. Misalnya, jika harga menembus rata-rata pergerakan 200 hari ke arah bawah, ini adalah sinyal bahwa tren naik berbalik arah. Moving averages adalah alat yang ampuh untuk menganalisis tren keamanan. Mereka memberikan support dan resistance yang berguna dan sangat mudah digunakan. Kerangka waktu paling umum yang digunakan saat membuat rata-rata bergerak adalah hari 200 hari, 100 hari, 50 hari, 20 hari dan 10 hari. Rata-rata 200 hari dianggap sebagai ukuran yang baik dari tahun perdagangan, rata-rata 100 hari setengah tahun, rata-rata 50 hari seperempat tahun, rata-rata 20 hari dalam sebulan dan 10 Rata rata dua minggu. Moving averages membantu pedagang teknik menghaluskan beberapa kebisingan yang ditemukan dalam pergerakan harga sehari-hari, memberi para pedagang pandangan yang lebih jelas mengenai tren harga. Sejauh ini kami fokus pada pergerakan harga, melalui grafik dan rata-rata. Pada bagian selanjutnya, perhatikan beberapa teknik lain yang digunakan untuk mengkonfirmasi pergerakan dan pola harga. Analisis Teknis: Indikator Dan Osilator Dalam prakteknya rata-rata bergerak akan memberikan perkiraan yang baik dari rata-rata deret waktu jika mean konstan atau perlahan berubah. Dalam kasus mean konstan, nilai m terbesar akan memberikan perkiraan terbaik dari mean yang mendasarinya. Periode pengamatan yang lebih lama akan rata-rata menghasilkan efek variabilitas. Tujuan menyediakan m yang lebih kecil adalah memungkinkan perkiraan tersebut merespons perubahan dalam proses yang mendasarinya. Sebagai ilustrasi, kami mengusulkan sebuah kumpulan data yang menggabungkan perubahan pada rata-rata deret deret waktu. Angka tersebut menunjukkan deret waktu yang digunakan untuk ilustrasi bersamaan dengan permintaan rata-rata dari mana seri tersebut dihasilkan. Mean dimulai sebagai konstanta pada 10. Dimulai pada waktu 21, meningkat satu unit pada setiap periode sampai mencapai nilai 20 pada waktu 30. Maka akan menjadi konstan lagi. Data disimulasikan dengan menambahkan mean, noise acak dari distribusi Normal dengan mean nol dan standar deviasi 3. Hasil simulasi dibulatkan ke bilangan bulat terdekat. Tabel menunjukkan simulasi pengamatan yang digunakan untuk contoh. Saat kita menggunakan tabel, kita harus ingat bahwa pada suatu waktu, hanya data terakhir yang diketahui. Estimasi parameter model,, untuk tiga nilai m yang berbeda ditunjukkan bersamaan dengan mean deret waktu pada gambar di bawah ini. Angka tersebut menunjukkan perkiraan rata-rata pergerakan rata-rata pada setiap waktu dan bukan perkiraan. Prakiraan akan menggeser kurva rata-rata bergerak ke kanan menurut periode. Satu kesimpulan segera terlihat dari gambar tersebut. Untuk ketiga perkiraan, rata-rata bergerak tertinggal dari tren linier, dengan lag meningkat dengan m. Keterlambatan adalah jarak antara model dan estimasi dalam dimensi waktu. Karena lag, rata-rata bergerak meremehkan pengamatan karena rata-rata meningkat. Bias estimator adalah perbedaan pada waktu tertentu dalam nilai rata-rata model dan nilai rata-rata yang diprediksi oleh moving average. Bias ketika mean meningkat adalah negatif. Untuk mean yang menurun, biasnya positif. Keterlambatan waktu dan bias yang diperkenalkan dalam estimasi adalah fungsi m. Semakin besar nilai m. Semakin besar besarnya lag dan bias. Untuk seri yang terus meningkat dengan tren a. Nilai lag dan bias estimator mean diberikan dalam persamaan di bawah ini. Kurva contoh tidak sesuai dengan persamaan ini karena contoh model tidak terus meningkat, melainkan dimulai sebagai perubahan konstan, berubah menjadi tren dan kemudian menjadi konstan lagi. Juga contoh kurva dipengaruhi oleh noise. Perkiraan rata-rata pergerakan periode ke masa depan ditunjukkan dengan menggeser kurva ke kanan. Kelemahan dan bias meningkat secara proporsional. Persamaan di bawah ini menunjukkan lag dan bias dari perkiraan periode ke masa depan bila dibandingkan dengan parameter model. Sekali lagi, formula ini untuk rangkaian waktu dengan tren linier konstan. Kita tidak perlu heran dengan hasil ini. Pengukur rata-rata bergerak didasarkan pada asumsi mean konstan, dan contohnya memiliki kecenderungan linier dalam mean selama sebagian periode penelitian. Karena deret real time jarang sekali menaati asumsi model apapun, kita harus siap untuk hasil seperti itu. Kita juga dapat menyimpulkan dari gambar bahwa variabilitas noise memiliki efek terbesar untuk m yang lebih kecil. Estimasi ini jauh lebih fluktuatif untuk rata-rata pergerakan 5 dari moving average 20. Kami memiliki keinginan yang saling bertentangan untuk meningkatkan m untuk mengurangi efek variabilitas akibat kebisingan, dan untuk menurunkan m untuk membuat perkiraan lebih responsif terhadap perubahan. Berarti. Kesalahan adalah perbedaan antara data aktual dan nilai perkiraan. Jika deret waktu benar-benar nilai konstan maka nilai kesalahan yang diharapkan adalah nol dan varians dari kesalahan tersebut terdiri dari sebuah istilah yang merupakan fungsi dari dan istilah kedua yaitu variansi dari noise,. Istilah pertama adalah varians dari mean yang diperkirakan dengan sampel pengamatan m, dengan mengasumsikan data berasal dari populasi dengan mean konstan. Istilah ini diminimalkan dengan membuat m seluas mungkin. Sebuah m besar membuat ramalan tidak responsif terhadap perubahan deret waktu yang mendasarinya. Untuk membuat perkiraan responsif terhadap perubahan, kami ingin m sekecil mungkin (1), namun ini meningkatkan varians kesalahan. Peramalan praktis membutuhkan nilai antara. Peramalan dengan Excel Peramalan Peramalan menerapkan rumus rata-rata bergerak. Contoh di bawah ini menunjukkan analisis yang diberikan oleh add-in untuk data sampel di kolom B. 10 pengamatan pertama diindeks -9 sampai 0. Dibandingkan dengan tabel di atas, indeks periode digeser oleh -10. Sepuluh observasi pertama memberikan nilai awal untuk estimasi dan digunakan untuk menghitung rata-rata pergerakan untuk periode 0. Kolom MA (10) (C) menunjukkan rata-rata bergerak yang dihitung. Parameter rata-rata bergerak m ada pada sel C3. Kolom Fore (1) (D) menunjukkan perkiraan untuk satu periode ke masa depan. Interval perkiraan ada di sel D3. Bila interval perkiraan diubah ke angka yang lebih besar, angka-angka di kolom Fore digeser ke bawah. Kolom Err (1) menunjukkan perbedaan antara pengamatan dan perkiraan. Misalnya, pengamatan pada waktu 1 adalah 6. Nilai perkiraan yang dibuat dari moving average pada waktu 0 adalah 11.1. Kesalahannya adalah -5.1. Standar deviasi dan rata-rata deviasi rata-rata (MAD) dihitung masing-masing sel E6 dan E7. Rata-rata waktu rata-rata data deret waktu (pengamatan sama jaraknya dalam waktu) dari beberapa periode berturut-turut. Disebut bergerak karena terus dihitung ulang saat data baru tersedia, ia berkembang dengan menjatuhkan nilai paling awal dan menambahkan nilai terbaru. Misalnya, rata-rata bergerak dari penjualan enam bulan dapat dihitung dengan mengambil rata-rata penjualan dari Januari sampai Juni, lalu rata-rata penjualan dari bulan Februari sampai Juli, kemudian dari bulan Maret sampai Agustus, dan seterusnya. Moving averages (1) mengurangi efek variasi data sementara, (2) memperbaiki kecocokan data ke garis (proses yang disebut smoothing) untuk menunjukkan tren data dengan lebih jelas, dan (3) menyoroti nilai di atas atau di bawah kecenderungan. Jika Anda menghitung sesuatu dengan varians yang sangat tinggi, yang terbaik yang dapat Anda lakukan adalah mengetahui rata-rata bergerak. Saya ingin tahu data rata-rata yang bergerak, jadi saya akan memiliki pemahaman yang lebih baik tentang bagaimana keadaan kami. Ketika Anda mencoba untuk mencari tahu beberapa nomor yang sering berubah, yang terbaik yang dapat Anda lakukan adalah menghitung rata-rata bergerak.
Moving-weighted-average-cost-flow
Opsi pemungutan saham insentif