Bagaimana-untuk-membangun-sistem perdagangan frekuensi tinggi

Bagaimana-untuk-membangun-sistem perdagangan frekuensi tinggi

Online-trading-companies-in-south-africa
Bagaimana-untuk-menutup-online-trading-account
Price-action-trading-system-mack


My-best-forex-strategy Top-online-trading-sites-in-canada Lkp-forex-thomas-cook Olap-moving-average Indikator sp-trading Syarat-ikut-forex

Dasar-Dasar Perdagangan Algorithmik: Konsep dan Contoh Algoritma adalah seperangkat instruksi yang didefinisikan secara jelas yang bertujuan untuk melaksanakan tugas atau proses. Perdagangan Algoritma (perdagangan otomatis, perdagangan kotak hitam, atau perdagangan algo-trading) adalah proses menggunakan komputer yang diprogram untuk mengikuti serangkaian instruksi yang ditetapkan untuk menempatkan perdagangan agar menghasilkan keuntungan dengan kecepatan dan frekuensi yang tidak mungkin dilakukan. Pedagang manusia Kumpulan aturan yang ditetapkan didasarkan pada timing, price, quantity atau model matematis. Terlepas dari peluang keuntungan bagi trader, algo-trading membuat pasar lebih likuid dan membuat perdagangan lebih sistematis dengan mengesampingkan dampak emosional manusia pada aktivitas perdagangan. Anggaplah seorang pedagang mengikuti kriteria perdagangan sederhana ini: Beli 50 saham dari saham ketika rata-rata pergerakan 50 hari di atas rata-rata pergerakan 200 hari Menjual saham saat rata-rata pergerakan 50 hari di bawah rata-rata pergerakan 200 hari Dengan menggunakan dua instruksi sederhana ini, mudah untuk menulis program komputer yang secara otomatis memantau harga saham (dan indikator rata-rata bergerak) dan menempatkan pesanan beli dan jual saat kondisi pasti terpenuhi. Pedagang tidak perlu lagi berjaga-jaga untuk harga langsung dan grafik, atau dimasukkan ke dalam pesanan secara manual. Sistem perdagangan algoritmik secara otomatis melakukannya untuknya, dengan mengidentifikasi peluang trading dengan benar. (Untuk lebih lanjut tentang moving averages, lihat: Simple Moving Averages Membuat Trends Stand Out.) Algo-trading memberikan keuntungan sebagai berikut: Perdagangan dieksekusi pada harga terbaik Instan dan penempatan order perdagangan yang akurat (sehingga peluang eksekusi yang tinggi pada tingkat yang diinginkan) Perdagangan Berjangka waktu dengan benar dan seketika, untuk menghindari perubahan harga yang signifikan Mengurangi biaya transaksi (lihat contoh penerapan di bawah ini) Pemeriksaan otomatis simultan pada beberapa kondisi pasar Mengurangi risiko kesalahan manual dalam menempatkan perdagangan Backtest algoritma, berdasarkan data historis dan real time yang ada Dikurangi Kemungkinan kesalahan oleh pedagang manusia berdasarkan faktor emosional dan psikologis Bagian terbesar dari perdagangan algo hari ini adalah perdagangan frekuensi tinggi (HFT), yang mencoba memanfaatkan penempatan sejumlah besar pesanan pada kecepatan yang sangat cepat di beberapa pasar dan beberapa keputusan. Parameter, berdasarkan instruksi yang telah diprogram sebelumnya. (Perdagangan valas yang lebih banyak, lihat: Strategi dan Rahasia Perusahaan Perdagangan Frekuensi Tinggi (HFT)) Algo-trading digunakan dalam berbagai bentuk aktivitas perdagangan dan investasi, termasuk: Investor jangka menengah hingga jangka panjang atau perusahaan penjual beli (dana pensiun , Reksadana, perusahaan asuransi) yang membeli saham dalam jumlah banyak namun tidak ingin mempengaruhi harga saham dengan investasi besar dan volume. Pedagang berjangka pendek dan pelaku jualan (pelaku pasar, spekulan, dan arbitrase) mendapat keuntungan dari pelaksanaan perdagangan otomatis di samping itu, alat bantu perdagangan algo untuk menciptakan likuiditas yang cukup bagi penjual di pasar. Pedagang yang sistematis (pengikut tren, pedagang pasang, hedge fund dll) merasa jauh lebih efisien untuk memprogram peraturan perdagangan mereka dan membiarkan program bertransaksi secara otomatis. Perdagangan algoritma menyediakan pendekatan yang lebih sistematis terhadap perdagangan aktif daripada metode yang didasarkan pada intuisi atau naluri pedagang manusia. Strategi Perdagangan Algoritmik Setiap strategi untuk perdagangan algoritmik memerlukan peluang teridentifikasi yang menguntungkan dalam hal peningkatan pendapatan atau pengurangan biaya. Berikut adalah strategi perdagangan umum yang digunakan dalam algo-trading: Strategi trading algoritmik yang paling umum mengikuti tren dalam moving averages. Saluran berjerawat Pergerakan tingkat harga dan indikator teknis terkait. Ini adalah strategi termudah dan paling sederhana untuk diterapkan melalui perdagangan algoritmik karena strategi ini tidak melibatkan prediksi atau perkiraan harga. Perdagangan dimulai berdasarkan terjadinya tren yang diinginkan. Yang mudah dan lugas untuk diimplementasikan melalui algoritma tanpa masuk ke kompleksitas analisis prediktif. Contoh yang disebutkan di atas tentang rata-rata pergerakan 50 dan 200 hari adalah tren yang populer mengikuti strategi. (Untuk informasi lebih lanjut tentang strategi perdagangan tren, lihat: Strategi Sederhana untuk Memanfaatkan Tren.) Membeli saham yang tercatat ganda dengan harga lebih rendah di satu pasar dan sekaligus menjualnya dengan harga lebih tinggi di pasar lain menawarkan selisih harga sebagai keuntungan bebas risiko Atau arbitrase Operasi yang sama dapat direplikasi untuk instrumen saham versus futures, karena perbedaan harga memang ada dari waktu ke waktu. Menerapkan algoritma untuk mengidentifikasi perbedaan harga tersebut dan menempatkan pesanan memungkinkan peluang menguntungkan secara efisien. Dana indeks telah menetapkan periode penyeimbangan ulang untuk membawa kepemilikan mereka setara dengan indeks benchmark masing-masing. Hal ini menciptakan peluang menguntungkan bagi pedagang algoritmik, yang memanfaatkan perdagangan yang diharapkan yang menawarkan keuntungan 20-80 basis poin bergantung pada jumlah saham dalam dana indeks, sebelum penyeimbangan dana indeks. Perdagangan semacam itu dimulai melalui sistem perdagangan algoritmik untuk eksekusi tepat waktu dan harga terbaik. Banyak model matematis yang telah terbukti, seperti strategi perdagangan delta-netral, yang memungkinkan perdagangan kombinasi pilihan dan keamanan mendasarnya. Dimana perdagangan ditempatkan untuk mengimbangi delta positif dan negatif sehingga delta portofolio dipertahankan pada nol. Strategi pengembalian rata-rata didasarkan pada gagasan bahwa harga aset tinggi dan rendah merupakan fenomena sementara yang kembali ke nilai rata-rata mereka secara berkala. Mengidentifikasi dan menentukan kisaran harga dan menerapkan algoritma berdasarkan pada yang memungkinkan perdagangan ditempatkan secara otomatis saat harga aset turun masuk dan keluar dari kisaran yang ditentukan. Strategi harga rata-rata tertimbang volume memecah pesanan besar dan melepaskan potongan pesanan yang ditentukan secara dinamis dari pesanan ke pasar dengan menggunakan profil volume historis tertentu. Tujuannya adalah untuk melaksanakan order mendekati Volume Weighted Average Price (VWAP), sehingga menguntungkan pada harga rata-rata. Strategi harga rata-rata tertimbang waktu mematahkan pesanan besar dan melepaskan potongan pesanan yang ditentukan secara dinamis dari pesanan ke pasar dengan menggunakan slot waktu yang dibagi rata antara waktu mulai dan akhir. Tujuannya adalah untuk melaksanakan perintah mendekati harga rata-rata antara waktu mulai dan akhir, sehingga meminimalkan dampak pasar. Sampai urutan perdagangan terisi penuh, algoritma ini terus mengirimkan sebagian pesanan, sesuai dengan rasio partisipasi yang ditentukan dan sesuai dengan volume yang diperdagangkan di pasar. Strategi langkah terkait mengirim pesanan pada persentase volume pasar yang ditentukan pengguna dan meningkatkan atau menurunkan tingkat partisipasi ini saat harga saham mencapai tingkat yang ditentukan pengguna. Strategi pelemahan implementasi bertujuan untuk meminimalkan biaya eksekusi suatu pesanan dengan melakukan perdagangan dari pasar real-time, sehingga menghemat biaya pesanan dan mendapatkan keuntungan dari biaya peluang eksekusi yang tertunda. Strategi ini akan meningkatkan tingkat partisipasi yang ditargetkan ketika harga saham bergerak dengan baik dan menurunkannya saat harga saham bergerak negatif. Ada beberapa kelas algoritma khusus yang mencoba mengidentifikasi kejadian di sisi lain. Algoritma sniffing ini, yang digunakan, misalnya, oleh pembuat pasar sell side memiliki kecerdasan bawaan untuk mengidentifikasi adanya algoritma pada sisi pembelian dengan pesanan besar. Deteksi seperti itu melalui algoritma akan membantu pembuat pasar mengidentifikasi peluang ketertiban besar dan memungkinkannya mendapatkan keuntungan dengan memenuhi pesanan dengan harga lebih tinggi. Ini terkadang dikenali sebagai front-running berteknologi tinggi. (Untuk informasi lebih lanjut tentang praktik perdagangan dan penipuan frekuensi tinggi, lihat: Jika Anda Membeli Saham Secara Online, Anda Terlibat dalam HFTs.) Persyaratan Teknis untuk Perdagangan Algoritma Menerapkan algoritma yang menggunakan program komputer adalah bagian terakhir, dipukuli dengan backtesting. Tantangannya adalah mengubah strategi yang teridentifikasi menjadi proses terkomputerisasi terpadu yang memiliki akses ke akun trading untuk menempatkan pesanan. Berikut ini adalah yang diperlukan: Pengetahuan pemrograman komputer untuk memprogram strategi perdagangan yang dibutuhkan, pemrogram yang dipekerjakan atau perangkat lunak perdagangan pra-dibuat Konektivitas jaringan dan akses ke platform perdagangan untuk menempatkan pesanan Akses ke umpan data pasar yang akan dipantau oleh algoritme untuk mendapatkan kesempatan Perintah Kemampuan dan infrastruktur untuk mendukung kembali sistem yang pernah dibangun, sebelum diluncurkan di pasar riil Data historis yang ada untuk backtesting, tergantung pada kompleksitas peraturan yang diterapkan dalam algoritma Berikut adalah contoh komprehensif: Royal Dutch Shell (RDS) terdaftar di Amsterdam Stock Exchange (AEX) dan London Stock Exchange (LSE). Mari kita membangun sebuah algoritma untuk mengidentifikasi peluang arbitrase. Berikut adalah beberapa pengamatan yang menarik: Perdagangan AEX dalam Euro, sementara perdagangan LSE di Sterling Pounds Karena perbedaan waktu satu jam, AEX dibuka satu jam lebih awal dari LSE, diikuti oleh perdagangan bursa secara simultan selama beberapa jam berikutnya dan kemudian diperdagangkan hanya di LSE selama Jam terakhir saat AEX ditutup Dapatkah kita menjelajahi kemungkinan perdagangan arbitrase pada saham Royal Dutch Shell yang terdaftar di dua pasar ini dalam dua mata uang yang berbeda Program komputer yang dapat membaca harga pasar saat ini Harga feed dari kedua LSE dan AEX Sebuah suku bunga valuta asing untuk Nilai tukar GBP-EUR Ketertiban menempatkan kemampuan yang dapat mengarahkan pesanan ke pertukaran yang benar Kemampuan pengujian kembali pada umpan harga historis Program komputer harus melakukan hal berikut: Baca umpan harga yang masuk dari saham RDS dari kedua bursa Dengan menggunakan kurs valuta asing yang tersedia . Ubah harga satu mata uang ke mata uang lainnya Jika ada selisih harga yang cukup besar (diskonto biaya broker) yang mengarah ke peluang yang menguntungkan, maka letakkan pesanan beli di bursa dengan harga lebih rendah dan pesan jual pada harga yang lebih tinggi. Jika pesanan dieksekusi sebagai Yang diinginkan, keuntungan arbitrase akan mengikuti Simple and Easy Namun, praktik perdagangan algoritmik tidak sesederhana itu untuk dipelihara dan dijalankan. Ingat, jika Anda bisa menempatkan perdagangan yang dihasilkan secara algo, demikian juga para pelaku pasar lainnya. Akibatnya, harga berfluktuasi dalam milenium dan bahkan mikrodetik. Dalam contoh di atas, apa yang terjadi jika perdagangan beli Anda akan dieksekusi, tapi menjual perdagangan tidak seperti harga jual berubah pada saat pesanan Anda menyentuh pasar Anda akan akhirnya duduk dengan posisi terbuka. Membuat strategi arbitrase Anda tidak berharga Ada risiko dan tantangan tambahan: misalnya, risiko kegagalan sistem, kesalahan konektivitas jaringan, kelambanan waktu antara pesanan dan eksekusi perdagangan, dan yang terpenting dari semua algoritma yang tidak sempurna. Algoritma yang lebih kompleks, backtesting yang lebih ketat diperlukan sebelum dilakukan. Analisis kuantitatif kinerja algoritma memainkan peran penting dan harus diperiksa secara kritis. Its menarik untuk pergi untuk otomatisasi dibantu oleh komputer dengan gagasan untuk menghasilkan uang dengan mudah. Tapi kita harus memastikan sistem diuji secara menyeluruh dan batas yang dibutuhkan ditetapkan. Analitik pedagang harus mempertimbangkan belajar pemrograman dan membangun sistem mereka sendiri, untuk yakin tentang pelaksanaan strategi yang tepat dengan cara yang sangat mudah. Penggunaan hati-hati dan pengujian menyeluruh terhadap algo-trading dapat menciptakan peluang yang menguntungkan. Jenis struktur kompensasi yang biasanya digunakan oleh hedge fund manager di bagian kompensasi mana yang berbasis kinerja. Perlindungan terhadap hilangnya pendapatan yang akan terjadi jika tertanggung meninggal dunia. Penerima manfaat bernama menerima. Ukuran hubungan antara perubahan kuantitas yang diminta dari barang tertentu dan perubahan harga. Harga. Total nilai pasar dolar dari seluruh saham perusahaan yang beredar. Kapitalisasi pasar dihitung dengan cara mengalikan. Frexit singkatan dari quotFrench exitquot adalah spinoff Prancis dari istilah Brexit, yang muncul saat Inggris memilih. Perintah ditempatkan dengan broker yang menggabungkan fitur stop order dengan pesanan limit. Perintah stop-limit will.Heres Bagaimana Anda Mengatur Operasi Perdagangan Frekuensi Tinggi Anda Minggu lalu, kami mendapat kehormatan untuk duduk bersama Mike Felix dan Doctor Lawrence Hansen dari Lime Brokerage. Broker agen berbasis di New York City yang mengkhususkan diri pada frekuensi tinggi. Perdagangan laten rendah. Takeaway utama. Mereka yang berpikir kecepatan tidak dapat diterima lebih baik terbiasa karena mereka di sini untuk tinggal dan hanya akan mendapatkan lebih cepat dari sini. Kami bertanya kepada mereka bagaimana orang bisa mengatur operasi perdagangan frekuensi tinggi mereka sendiri di tingkat amatir. Setelah dipaku persis seperti apa definisi high frequency trading tersebut. Kami melewati langkah-langkah yang perlu Anda ambil untuk mewujudkannya. Lihat As: One Page SlidesThis post akan merinci apa yang saya lakukan untuk membuat approx. 500k dari perdagangan frekuensi tinggi dari tahun 2009 sampai 2010. Karena saya trading secara independen dan saya tidak lagi menjalankan program saya, Irsquom senang memberi tahu semua. Perdagangan saya sebagian besar berada di kontrak berjangka Russel 2000 dan DAX. Kunci kesuksesan saya, saya percaya, tidak dalam persamaan keuangan yang canggih, melainkan dalam keseluruhan rancangan algoritma yang mengikat banyak komponen sederhana dan menggunakan pembelajaran mesin untuk mengoptimalkan profitabilitas maksimum. Anda tidak perlu mengetahui terminologi yang canggih di sini karena ketika saya mengatur program saya, semuanya didasarkan pada intuisi. (Andrew Ngrsquos tentu saja belajar mesin yang menakjubkan belum tersedia - btw jika Anda mengeklik tautan itu milik Anda untuk dibawa ke proyek saya saat ini: CourseTalk, situs ulasan untuk MOOC) Pertama, saya hanya ingin menunjukkan bahwa kesuksesan saya bukan sekadar hasil dari keberuntungan. Program saya menghasilkan 1000-4000 perdagangan per hari (setengah lama, setengah pendek) dan tidak pernah masuk ke posisi lebih dari beberapa kontrak dalam satu waktu. Ini berarti keberuntungan acak dari perdagangan tertentu rata-rata cukup cepat. Hasilnya saya tidak pernah kalah lebih dari 2000 dalam satu hari dan tidak pernah mengalami bulan yang kalah: (EDIT) Angka-angka ini setelah membayar komisi) Dan herersquos sebuah bagan untuk memberi Anda kesan variasi harian. Catatan ini tidak termasuk 7 bulan terakhir karena - saat angka tersebut berhenti naik - saya kehilangan motivasi untuk masuk ke dalamnya. Latar belakang trading saya Sebelum membuat program trading otomatis saya Irsquod memiliki pengalaman 2 tahun sebagai trader hari ldquomanualrdquo. Ini terjadi pada tahun 2001 - ini adalah hari-hari awal perdagangan elektronik dan ada peluang bagi ldquoscalpersrdquo untuk menghasilkan uang dengan baik. Saya hanya bisa menggambarkan apa yang saya lakukan sama seperti bermain game judi video dengan tepi yang seharusnya. Menjadi sukses berarti menjadi cepat, disiplin, dan memiliki kemampuan pengenalan pola intuitif yang baik. Saya mampu menghasilkan sekitar 250k, melunasi pinjaman mahasiswa saya dan memiliki sisa uang. Menang Selama lima tahun ke depan saya akan meluncurkan dua startups, mengambil beberapa keterampilan pemrograman di sepanjang jalan. Tidak akan sampai akhir 2008 bahwa saya akan kembali ke perdagangan. Dengan uang yang hampir habis dari penjualan startup pertama saya, perdagangan menawarkan harapan beberapa uang cepat sementara saya mengetahui langkah selanjutnya saya. Pada tahun 2008 saya memakai futures perdagangan hari ini dengan menggunakan software yang disebut T4. Irsquod menginginkan beberapa hotkey yang disesuaikan dengan pesanan, jadi setelah menemukan T4 memiliki API, saya mengambil tantangan untuk belajar C (bahasa pemrograman yang dibutuhkan untuk menggunakan API) dan terus maju dan membangun beberapa hotkeys lagi. Setelah membuat kaki saya basah dengan API, saya segera memiliki aspirasi yang lebih besar: Saya ingin mengajarkan komputer untuk berdagang untuk saya. API menyediakan baik arus data pasar dan cara mudah untuk mengirim pesanan ke bursa - yang harus saya lakukan adalah menciptakan logika di tengahnya. Berikut adalah screenshot dari jendela perdagangan T4. Yang keren adalah ketika saya menjalankan program saya, saya dapat melihat perdagangan komputer di antarmuka yang sama persis ini. Menonton perintah nyata muncul masuk dan keluar (sendiri dengan uang riil saya) sangat mendebarkan dan menyeramkan. Perancangan Algoritma Dari awal, tujuan saya adalah menyiapkan sistem sedemikian rupa sehingga saya cukup yakin Irsquod menghasilkan uang sebelum melakukan perdagangan langsung. Untuk mencapai hal ini, saya perlu membangun kerangka simulasi perdagangan yang seakurat mungkin - mensimulasikan live trading. Sementara perdagangan dalam mode live diperlukan pemutakhiran pasar pemrosesan yang mengalir melalui API, mode simulasi memerlukan pembacaan pasar dari file data. Untuk mengumpulkan data ini, saya menyiapkan versi pertama program saya untuk hanya terhubung ke API dan merekam pembaruan pasar dengan cap waktu. Saya akhirnya menggunakan data pasar terkini 4 minggu untuk melatih dan menguji sistem saya. Dengan kerangka dasar di tempat saya masih memiliki tugas mencari tahu bagaimana membuat sistem perdagangan yang menguntungkan. Ternyata algoritme saya akan terbagi menjadi dua komponen berbeda, yang kemudian diungkap Irsquoll: Memprediksi pergerakan harga dan Membuat perdagangan yang menguntungkan Memprediksi pergerakan harga Mungkin komponen yang jelas dari sistem perdagangan mana pun dapat memprediksi kemana harga akan bergerak. Dan saya tidak terkecuali. Saya menentukan harga saat ini sebagai rata-rata tawaran dalam dan penawaran dalam dan saya menetapkan tujuan untuk memperkirakan di mana harga akan berada dalam 10 detik berikutnya. Algoritma saya perlu memikirkan prediksi momen demi momen ini sepanjang hari perdagangan. Membuat indikator pengoptimalan amp saya membuat beberapa indikator yang terbukti memiliki kemampuan yang berarti untuk memprediksi pergerakan harga jangka pendek. Setiap indikator menghasilkan angka yang positif atau negatif. Indikatornya berguna jika lebih sering daripada bukan angka positif yang sesuai dengan pasar naik dan angka negatif berhubungan dengan pasar yang turun. Sistem saya memungkinkan saya untuk dengan cepat menentukan seberapa banyak kemampuan prediktif indikator yang ada sehingga saya dapat bereksperimen dengan banyak indikator berbeda untuk melihat apa yang berhasil. Banyak indikator memiliki variabel dalam formula yang menghasilkannya dan saya dapat menemukan nilai optimal untuk variabel tersebut dengan melakukan perbandingan dengan hasil yang dicapai dengan nilai yang bervariasi. Indikator yang paling berguna semuanya relatif sederhana dan didasarkan pada kejadian terkini di pasar yang sedang saya trading dan juga pasar efek berkorelasi. Membuat prediksi pergerakan harga pasti Memiliki indikator yang hanya memperkirakan pergerakan harga naik atau turun tidak cukup. Saya perlu tahu persis berapa banyak pergerakan harga yang diprediksi oleh setiap nilai yang mungkin dari setiap indikator. Saya membutuhkan formula yang akan mengubah nilai indikator menjadi prediksi harga. Untuk mencapai hal ini, saya melacak pergerakan harga yang diprediksi dalam 50 ember yang bergantung pada kisaran nilai indikator yang jatuh. Ini menghasilkan prediksi unik untuk setiap ember yang kemudian dapat saya grafik di Excel. Seperti yang Anda lihat, kenaikan harga yang diharapkan akan meningkat seiring dengan meningkatnya nilai indikator. Berdasarkan grafik seperti ini saya bisa membuat formula agar sesuai dengan kurva. Pada awalnya saya melakukan ini dengan benar secara manual tapi saya segera menulis beberapa kode untuk mengotomatisasi proses ini. Perhatikan bahwa tidak semua kurva indikator memiliki bentuk yang sama. Perhatikan juga bahwa ember itu didistribusikan secara logaritma sehingga menyebarkan data secara merata. Akhirnya perhatikan bahwa nilai indikator negatif (dan perkiraan harga turunnya yang sesuai) dibalik dan digabungkan dengan nilai positif. (Algoritma saya diobati naik turun sama). Menggabungkan indikator untuk prediksi tunggal Hal penting yang harus dipertimbangkan adalah bahwa setiap indikator tidak sepenuhnya independen. Saya tidak hanya bisa menambahkan semua prediksi yang dibuat setiap indikator secara individual. Kuncinya adalah untuk mengetahui nilai prediktif tambahan yang masing-masing indikator melebihi perkiraan yang telah diprediksi. Ini sulit diterapkan, tapi itu berarti bahwa jika saya menerapkan beberapa indikator pada saat bersamaan, saya harus hati-hati mengubahnya sehingga akan mempengaruhi prediksi orang lain. Agar ldquocurve fitrdquo semua indikator pada saat yang sama saya setup optimizer untuk langkah hanya 30 jalan menuju kurva prediksi baru dengan masing-masing lulus. Dengan lompatan 30 ini, saya menemukan bahwa kurva prediksi akan stabil dalam beberapa lintasan. Dengan setiap indikator yang sekarang memberi kita prediksi harga tambahan, saya bisa menambahkannya untuk menghasilkan prediksi tunggal dimana pasar berada dalam 10 detik. Mengapa memprediksi harga tidak cukup Anda mungkin berpikir bahwa dengan keunggulan di pasar ini saya emas. Tapi Anda harus ingat bahwa pasar terdiri dari penawaran dan penawaran - bukan hanya satu harga pasar. Kesuksesan dalam perdagangan frekuensi tinggi turun untuk mendapatkan harga yang bagus dan harganya tidak semudah itu. Faktor-faktor berikut membuat sistem yang menguntungkan menjadi sulit: Dengan setiap perdagangan saya harus membayar komisi kepada broker dan bursa saya. Penyebaran (selisih antara tawaran tertinggi dan penawaran terendah) berarti bahwa jika saya hanya membeli dan menjual secara acak Irsquod akan kehilangan satu ton uang. Sebagian besar volume pasar adalah bots lain yang hanya akan melakukan perdagangan dengan saya jika mereka mengira memiliki beberapa keunggulan statistik. Melihat sebuah tawaran tidak menjamin bahwa saya dapat membelinya. Pada saat pesanan beli saya sampai ke bursa, sangat mungkin tawaran itu dibatalkan. Sebagai pemain pasar kecil tidak mungkin saya bisa bersaing dengan kecepatan sendiri. Membangun simulasi perdagangan penuh Jadi, saya memiliki kerangka kerja yang memungkinkan saya untuk mendukung dan mengoptimalkan indikator. Tapi saya harus melampaui ini - saya memerlukan kerangka kerja yang memungkinkan saya melakukan backtest dan mengoptimalkan sistem perdagangan penuh di mana saya mengirim pesanan dan mendapatkan posisi. Dalam hal ini Irsquod mengoptimalkan total PampL dan sampai batas tertentu rata-rata PampL per perdagangan. Ini akan menjadi rumit dan dalam beberapa hal tidak mungkin untuk model persis tapi saya melakukan yang terbaik yang saya bisa. Berikut adalah beberapa masalah yang harus saya hadapi: Ketika sebuah pesanan dikirim ke pasar dalam simulasi, saya harus memodelkan jeda waktu. Fakta bahwa sistem saya melihat sebuah tawaran tidak berarti bahwa itu bisa membelinya langsung. Sistem akan mengirim pesanan, menunggu sekitar 20 milidetik dan kemudian hanya jika tawaran itu masih ada yang dianggap sebagai perdagangan yang dieksekusi. Ini tidak tepat karena jeda waktu sebenarnya tidak konsisten dan tidak dilaporkan. Ketika saya mengajukan penawaran atau penawaran, saya harus melihat arus eksekusi perdagangan (disediakan oleh API) dan menggunakannya untuk mengukur kapan pesanan saya akan berhasil dieksekusi. Untuk melakukan ini, saya harus melacak posisi pesanan saya dalam antrian. (Ini merupakan sistem first-in first-out pertama.) Sekali lagi, saya tidak dapat melakukan ini dengan sempurna tapi saya membuat perkiraan terbaik. Untuk memperbaiki simulasi pelaksanaan pesanan saya, yang saya lakukan adalah mengambil file log saya dari live trading melalui API dan membandingkannya dengan file log yang dihasilkan oleh simulasi perdagangan dari periode waktu yang sama. Saya bisa mendapatkan simulasi saya sampai pada titik yang cukup akurat dan untuk bagian-bagian yang tidak mungkin dipodelkan dengan tepat, saya memastikan setidaknya menghasilkan hasil yang serupa secara statistik (dalam metrik yang saya anggap penting). Membuat perdagangan yang menguntungkan Dengan model simulasi pesanan di tempat, saya sekarang bisa mengirim pesanan dalam mode simulasi dan melihat Simulasi PampL. Tapi bagaimana sistem saya tahu kapan dan di mana untuk membeli dan menjual Prediksi pergerakan harga adalah titik awal tapi bukan keseluruhan cerita. Yang saya lakukan adalah membuat sistem penilaian untuk masing-masing dari 5 tingkat harga pada penawaran dan penawaran. Ini termasuk satu tingkat di atas tawaran dalam (untuk pesanan beli) dan satu tingkat di bawah tawaran dalam (untuk pesanan jual). Jika skor pada tingkat harga tertentu berada di atas ambang batas tertentu yang berarti sistem saya harus memiliki bidoffer aktif di sana - di bawah ambang batas maka pesanan aktif apapun harus dibatalkan. Berdasarkan hal tersebut, tidak jarang sistem saya akan memicu penawaran di pasar lalu segera membatalkannya. (Meskipun saya mencoba untuk meminimalkan hal ini karena hal itu mengganggu siapa pun yang melihat layar dengan mata manusia - termasuk saya.) Nilai tingkat harga dihitung berdasarkan faktor-faktor berikut: Prediksi pergerakan harga (yang telah kita bahas sebelumnya). Tingkat harga yang dimaksud. (Tingkat dalam berarti prediksi pergerakan harga yang lebih besar diperlukan.) Jumlah kontrak di depan pesanan saya dalam antrian. (Kurang lebih baik.) Jumlah kontrak di balik pesanan saya dalam antrian. (Lebih baik lebih baik.) Pada dasarnya faktor-faktor ini berfungsi untuk mengidentifikasi tempat-tempat ldquosaferdquo untuk bidoffer. Prediksi pergerakan harga saja tidak memadai karena tidak memperhitungkan kenyataan bahwa ketika mengajukan penawaran saya tidak otomatis terisi - saya hanya terisi jika seseorang menjual kepada saya di sana. Kenyataannya adalah fakta bahwa seseorang yang menjual kepada saya pada harga tertentu mengubah peluang statistik perdagangan. Variabel yang digunakan dalam langkah ini semuanya tunduk pada optimasi. Hal ini dilakukan dengan cara yang sama seperti yang saya optimalkan pada indikator pergerakan harga kecuali dalam hal ini saya mengoptimalkan posisi bottom line PampL. Apa yang diabaikan program saya Ketika berdagang sebagai manusia kita sering memiliki emosi dan bias yang kuat yang dapat menyebabkan keputusan yang kurang optimal. Jelas saya tidak ingin mengkodifikasi bias ini. Berikut adalah beberapa faktor yang diabaikan oleh sistem saya: Harga suatu posisi dimasukkan - Di kantor perdagangan, cukup umum mendengar percakapan tentang harga di mana seseorang panjang atau pendek seolah-olah itu akan mempengaruhi pengambilan keputusan di masa depan mereka. Meskipun ini memiliki beberapa keabsahan sebagai bagian dari strategi pengurangan risiko, hal itu benar-benar tidak berpengaruh pada kejadian masa depan di pasar. Oleh karena itu, program saya sama sekali mengabaikan informasi ini. Konsep itu sama dengan mengabaikan biaya hangus. Pergi pendek vs keluar dari posisi panjang - Biasanya seorang trader akan memiliki kriteria berbeda yang menentukan di mana untuk menjual posisi long versus mana harus pergi pendek. Namun dari perspektif algoritme saya tidak ada alasan untuk membuat perbedaan. Jika algoritme saya memperkirakan pergerakan ke bawah adalah ide bagus terlepas dari apakah saat ini panjang, pendek, atau datar. Strategi tingkat atas yang ldquodoubling - Ini adalah strategi umum dimana pedagang akan membeli lebih banyak saham jika ada perdagangan asli melawan mereka. Hal ini menyebabkan harga beli rata-rata Anda lebih rendah dan berarti kapan (atau jika) saham berbalik, Anda harus mengatur agar uang Anda kembali dalam waktu singkat. Menurut pendapat saya ini benar-benar strategi yang mengerikan kecuali jika Anda memilih Warren Buffet. Yoursquore menipu untuk berpikir bahwa Anda melakukannya dengan baik karena sebagian besar perdagangan Anda akan menjadi pemenang. Masalahnya adalah saat Anda kehilangan Anda kehilangan besar. Efek lainnya adalah membuat sulit menilai apakah Anda benar-benar memiliki keunggulan di pasar atau hanya beruntung. Mampu memonitor dan memastikan bahwa program saya ternyata memiliki keunggulan merupakan tujuan penting. Karena algoritme saya membuat keputusan dengan cara yang sama terlepas dari dari mana ia memasuki perdagangan atau jika saat ini panjang atau pendek, kadang-kadang mereka masuk (dan mengambil) beberapa transaksi kerugian besar (sebagai tambahan pada beberapa perdagangan besar). Tapi, sebaiknya Anda tidak berpikir bahwa tidak ada manajemen risiko. Untuk mengelola risiko saya memaksakan posisi maksimal 2 kontrak sekaligus, kadang-kadang menumpuk pada hari volume tinggi. Saya juga memiliki batas kerugian harian maksimum untuk melindungi terhadap kondisi pasar yang tak terduga atau adanya bug dalam perangkat lunak saya. Batasan ini diberlakukan dalam kode saya tapi juga di backend melalui broker saya. Seperti yang terjadi saya tidak pernah menemui masalah yang berarti. Menjalankan Algoritma Dari saat saya mulai mengerjakan program saya, saya membutuhkan waktu sekitar 6 bulan sebelum saya sampai pada titik profitabilitas dan mulai menjalankannya secara langsung. Meski lumayan banyak waktu belajar bahasa pemrograman baru. Seiring saya memperbaiki program, saya melihat peningkatan keuntungan untuk masing-masing empat bulan ke depan. Setiap minggu saya akan melatih sistem saya berdasarkan data 4 minggu sebelumnya. Saya menemukan ini mencapai keseimbangan yang tepat antara menangkap tren perilaku pasar terkini dan mengasuransikan algoritme saya memiliki cukup data untuk membangun pola yang berarti. Sebagai pelatihan mulai mengambil lebih banyak dan lebih banyak waktu saya membaginya sehingga bisa dilakukan oleh 8 mesin virtual menggunakan amazon EC2. Hasilnya kemudian disatukan pada mesin lokal saya. Inti dari trading saya adalah Oktober 2009 ketika saya menghasilkan hampir 100k. Setelah ini saya terus menghabiskan empat bulan ke depan untuk mencoba memperbaiki program saya meski mengalami penurunan keuntungan setiap bulannya. Sayangnya, pada titik ini saya rasa Irsquod menerapkan semua gagasan terbaik saya karena tidak ada yang saya coba nampaknya sangat membantu. Dengan frustrasi karena tidak bisa melakukan perbaikan dan tidak merasakan pertumbuhan saya mulai memikirkan arah baru. Saya mengirimi email ke 6 perusahaan perdagangan frekuensi tinggi yang berbeda untuk melihat apakah mereka tertarik untuk membeli perangkat lunak saya dan mempekerjakan saya untuk bekerja untuk mereka. Tidak ada yang menjawab Saya memiliki beberapa ide startup baru yang ingin saya kerjakan jadi saya tidak pernah menindaklanjutinya. UPDATE - Saya memposting ini di Hacker News dan mendapat banyak perhatian. Saya hanya ingin mengatakan bahwa saya tidak menganjurkan siapapun yang mencoba melakukan sesuatu seperti ini sekarang juga. Anda akan membutuhkan tim orang yang sangat cerdas dengan berbagai pengalaman untuk memiliki harapan untuk bersaing. Bahkan ketika saya melakukan ini, saya percaya sangat jarang bagi individu untuk meraih kesuksesan (walaupun saya pernah mendengar tentang orang lain.) Ada komentar di bagian atas halaman yang menyebutkan statistik yang dimanipulasi dan merujuk kepada saya sebagai investor ldquoretail yang menginginkan Akan memilih offrdquo. Ini adalah komentar yang agak disayangkan yang hanya didasarkan pada kenyataan. Menetapkan hal itu di samping beberapa komentar menarik lainnya: news.ycombinatoritemid4748624 UPDATE 2 - Irsquove mengirimkan sebuah FAQ lanjutan yang menjawab beberapa pertanyaan umum yang Irsquove terima dari pedagang tentang posting ini.
Strategi-strategi trading sederhana
Singapura-forex-trader-blog