Bagaimana-untuk-menggunakan-bergerak-rata-rata peramalan

Bagaimana-untuk-menggunakan-bergerak-rata-rata peramalan

Option-trading-spreadsheet-journal
Stock-options-monthly-income
Stock-options-payment


Sinyal one-touch-binary-options Uml-class-diagram-for-foreign-trading-system Masalah rata-rata bergerak sederhana Stock-options-vs-restricted-stock-units Xm-biner-pilihan Bagaimana-saham-pilihan-adalah-harga

Moving average Mean of time series data (pengamatan sama spasi dalam waktu) dari beberapa periode berturut-turut. Disebut bergerak karena terus dihitung ulang saat data baru tersedia, ia berkembang dengan menjatuhkan nilai paling awal dan menambahkan nilai terbaru. Misalnya, rata-rata bergerak dari penjualan enam bulan dapat dihitung dengan mengambil rata-rata penjualan dari Januari sampai Juni, lalu rata-rata penjualan dari bulan Februari sampai Juli, kemudian dari bulan Maret sampai Agustus, dan seterusnya. Moving averages (1) mengurangi efek variasi data sementara, (2) memperbaiki kecocokan data ke garis (proses yang disebut smoothing) untuk menunjukkan tren data dengan lebih jelas, dan (3) menyoroti nilai di atas atau di bawah kecenderungan. Jika Anda menghitung sesuatu dengan varians yang sangat tinggi, yang terbaik yang dapat Anda lakukan adalah mengetahui rata-rata bergerak. Saya ingin tahu data rata-rata yang bergerak, jadi saya akan memiliki pemahaman yang lebih baik tentang bagaimana keadaan kami. Ketika Anda mencoba untuk mencari tahu beberapa nomor yang sering berubah, yang terbaik yang dapat Anda lakukan adalah menghitung rata-rata bergerak. Dalam praktiknya, rata-rata bergerak akan memberikan perkiraan yang baik tentang mean deret waktu jika mean konstan atau perlahan berubah. Dalam kasus mean konstan, nilai m terbesar akan memberikan perkiraan terbaik dari mean yang mendasarinya. Periode pengamatan yang lebih lama akan rata-rata menghasilkan efek variabilitas. Tujuan menyediakan m yang lebih kecil adalah memungkinkan perkiraan tersebut merespons perubahan dalam proses yang mendasarinya. Sebagai ilustrasi, kami mengusulkan sebuah kumpulan data yang menggabungkan perubahan pada rata-rata deret deret waktu. Angka tersebut menunjukkan deret waktu yang digunakan untuk ilustrasi bersamaan dengan permintaan rata-rata dari mana seri tersebut dihasilkan. Mean dimulai sebagai konstanta pada 10. Dimulai pada waktu 21, meningkat satu unit pada setiap periode sampai mencapai nilai 20 pada waktu 30. Maka akan menjadi konstan lagi. Data disimulasikan dengan menambahkan mean, noise acak dari distribusi Normal dengan mean nol dan standar deviasi 3. Hasil simulasi dibulatkan ke bilangan bulat terdekat. Tabel menunjukkan simulasi pengamatan yang digunakan untuk contoh. Saat kita menggunakan tabel, kita harus ingat bahwa pada suatu waktu, hanya data terakhir yang diketahui. Estimasi parameter model,, untuk tiga nilai m yang berbeda ditunjukkan bersamaan dengan mean deret waktu pada gambar di bawah ini. Angka tersebut menunjukkan perkiraan rata-rata pergerakan rata-rata pada setiap waktu dan bukan perkiraan. Prakiraan akan menggeser kurva rata-rata bergerak ke kanan menurut periode. Satu kesimpulan segera terlihat dari gambar tersebut. Untuk ketiga perkiraan, rata-rata bergerak tertinggal dari tren linier, dengan lag meningkat dengan m. Keterlambatan adalah jarak antara model dan estimasi dalam dimensi waktu. Karena lag, rata-rata bergerak meremehkan pengamatan karena rata-rata meningkat. Bias estimator adalah perbedaan pada waktu tertentu dalam nilai rata-rata model dan nilai rata-rata yang diprediksi oleh moving average. Bias ketika mean meningkat adalah negatif. Untuk mean yang menurun, biasnya positif. Keterlambatan waktu dan bias yang diperkenalkan dalam estimasi adalah fungsi m. Semakin besar nilai m. Semakin besar besarnya lag dan bias. Untuk seri yang terus meningkat dengan tren a. Nilai lag dan bias estimator mean diberikan dalam persamaan di bawah ini. Kurva contoh tidak sesuai dengan persamaan ini karena contoh model tidak terus meningkat, melainkan dimulai sebagai perubahan konstan, berubah menjadi tren dan kemudian menjadi konstan lagi. Juga contoh kurva dipengaruhi oleh noise. Perkiraan rata-rata pergerakan periode ke masa depan ditunjukkan dengan menggeser kurva ke kanan. Kelemahan dan bias meningkat secara proporsional. Persamaan di bawah ini menunjukkan lag dan bias dari perkiraan periode ke masa depan bila dibandingkan dengan parameter model. Sekali lagi, formula ini untuk rangkaian waktu dengan tren linier konstan. Kita tidak perlu heran dengan hasil ini. Pengukur rata-rata bergerak didasarkan pada asumsi mean konstan, dan contohnya memiliki kecenderungan linier dalam mean selama sebagian periode penelitian. Karena deret real time jarang sekali menaati asumsi model apapun, kita harus siap untuk hasil seperti itu. Kita juga dapat menyimpulkan dari gambar bahwa variabilitas noise memiliki efek terbesar untuk m yang lebih kecil. Estimasi ini jauh lebih fluktuatif untuk rata-rata pergerakan 5 dari moving average 20. Kami memiliki keinginan yang saling bertentangan untuk meningkatkan m untuk mengurangi efek variabilitas akibat kebisingan, dan untuk menurunkan m untuk membuat perkiraan lebih responsif terhadap perubahan. Berarti. Kesalahan adalah perbedaan antara data aktual dan nilai perkiraan. Jika deret waktu benar-benar nilai konstan maka nilai kesalahan yang diharapkan adalah nol dan varians dari kesalahan tersebut terdiri dari sebuah istilah yang merupakan fungsi dari dan istilah kedua yaitu variansi dari noise,. Istilah pertama adalah varians dari mean yang diperkirakan dengan sampel pengamatan m, dengan mengasumsikan data berasal dari populasi dengan mean konstan. Istilah ini diminimalkan dengan membuat m seluas mungkin. Sebuah m besar membuat ramalan tidak responsif terhadap perubahan deret waktu yang mendasarinya. Untuk membuat perkiraan responsif terhadap perubahan, kami ingin m sekecil mungkin (1), namun ini meningkatkan varians kesalahan. Peramalan praktis membutuhkan nilai antara. Peramalan dengan Excel Peramalan Peramalan menerapkan rumus rata-rata bergerak. Contoh di bawah ini menunjukkan analisis yang diberikan oleh add-in untuk data sampel di kolom B. 10 pengamatan pertama diindeks -9 sampai 0. Dibandingkan dengan tabel di atas, indeks periode digeser oleh -10. Sepuluh observasi pertama memberikan nilai awal untuk estimasi dan digunakan untuk menghitung rata-rata pergerakan untuk periode 0. Kolom MA (10) (C) menunjukkan rata-rata bergerak yang dihitung. Parameter rata-rata bergerak m ada pada sel C3. Kolom Fore (1) (D) menunjukkan perkiraan untuk satu periode ke masa depan. Interval perkiraan ada di sel D3. Bila interval perkiraan diubah ke angka yang lebih besar, angka-angka di kolom Fore digeser ke bawah. Kolom Err (1) menunjukkan perbedaan antara pengamatan dan perkiraan. Misalnya, pengamatan pada waktu 1 adalah 6. Nilai perkiraan yang dibuat dari moving average pada waktu 0 adalah 11.1. Kesalahannya adalah -5.1. Standar deviasi dan Mean Average Deviation (MAD) dihitung masing-masing sel E6 dan E7. 7 Perangkap Rata-rata Bergerak Rata-rata bergerak adalah harga rata-rata keamanan selama periode waktu tertentu. Analis sering menggunakan moving averages sebagai alat analisis untuk memudahkan tren pasar, karena efek bergerak naik turun. Moving averages dapat membentuk trend dan mengukur momentum. Oleh karena itu, mereka dapat digunakan untuk menunjukkan kapan investor harus membeli atau menjual keamanan tertentu. Investor juga dapat menggunakan moving averages untuk mengidentifikasi titik support atau resistance untuk mengukur ketika harga cenderung berubah arah. Dengan mempelajari rentang perdagangan historis, titik support dan resistance ditetapkan di mana harga sebuah keamanan membalikkan tren ke atas atau ke bawahnya, di masa lalu. Poin ini kemudian digunakan untuk membuat, membeli atau menjual keputusan. Sayangnya, rata-rata bergerak bukan alat yang sempurna untuk membangun tren dan menghadirkan banyak risiko yang tidak penting namun penting bagi investor. Selain itu, moving averages tidak berlaku untuk semua jenis perusahaan dan industri. Beberapa kelemahan utama dari moving averages meliputi: 1. Moving averages menarik tren dari informasi masa lalu. Mereka tidak memperhitungkan perubahan akun yang dapat mempengaruhi kinerja keamanan di masa depan, seperti pesaing baru, permintaan produk yang lebih tinggi atau lebih rendah di industri dan perubahan dalam struktur manajerial perusahaan. 2. Idealnya, rata-rata bergerak akan menunjukkan perubahan harga keamanan yang konsisten, dari waktu ke waktu. Sayangnya, rata-rata bergerak tidak bekerja untuk semua perusahaan, terutama bagi industri yang sangat tidak stabil atau yang sangat dipengaruhi oleh kejadian saat ini. Hal ini terutama berlaku untuk industri minyak dan industri yang sangat spekulatif, pada umumnya. 3. Moving averages dapat tersebar dalam jangka waktu tertentu. Namun, ini bisa menjadi masalah karena tren umum bisa berubah secara signifikan tergantung dari jangka waktu yang digunakan. Kerangka waktu yang lebih pendek memiliki volatilitas lebih, sedangkan kerangka waktu yang lebih lama memiliki volatilitas yang lebih rendah, namun jangan memperhitungkan perubahan baru di pasar. Investor harus berhati-hati dengan kerangka waktu yang mereka pilih, untuk memastikan trennya jelas dan relevan. 4. Perdebatan yang sedang berlangsung adalah apakah penekanan lebih lanjut harus dilakukan pada hari-hari terakhir dalam periode waktu tertentu. Banyak yang merasa bahwa data terbaru lebih mencerminkan arah keamanan bergerak, sementara yang lain merasa bahwa memberi bobot beberapa hari lebih banyak daripada yang lain, salah mendasari trennya. Investor yang menggunakan metode yang berbeda untuk menghitung rata-rata dapat menarik tren yang sama sekali berbeda. (Pelajari lebih lanjut dalam Rata-rata Bergerak Sederhana vs. Eksponensial.) 5. Banyak investor berpendapat bahwa analisis teknis adalah cara yang tidak berarti untuk memprediksi perilaku pasar. Mereka bilang pasar tidak memiliki ingatan dan masa lalu bukan merupakan indikator masa depan. Apalagi ada penelitian substansial untuk mendukungnya. Sebagai contoh, Roy Nersesian melakukan penelitian dengan lima strategi yang berbeda menggunakan moving averages. Tingkat keberhasilan setiap strategi bervariasi antara 37 dan 66. Penelitian ini menunjukkan bahwa rata-rata bergerak hanya menghasilkan hasil sekitar setengah dari waktu, yang dapat membuat mereka menggunakan proposisi berisiko untuk secara efektif menentukan waktu pasar saham. 6. Efek sering menunjukkan pola perilaku siklis. Hal ini juga berlaku untuk perusahaan utilitas, yang memiliki permintaan yang mantap untuk produk mereka dari tahun ke tahun, namun mengalami perubahan musiman yang kuat. Meskipun rata-rata bergerak dapat membantu kelancaran tren ini, mereka juga dapat menyembunyikan fakta bahwa keamanan sedang tren dalam pola osilasi. (Untuk mempelajari lebih lanjut, lihat Keep An Eye On Momentum.) 7. Tujuan dari setiap tren adalah untuk memperkirakan kemana harga keamanan akan berada di masa depan. Jika keamanan tidak mengarah ke kedua arah, itu tidak memberikan kesempatan untuk mendapatkan keuntungan dari pembelian atau short selling. Satu-satunya cara seorang investor dapat memperoleh keuntungan adalah dengan menerapkan strategi berbasis pilihan yang canggih yang bergantung pada harga yang tetap stabil. Garis Dasar Rata-rata Bergerak telah dianggap sebagai alat analisis yang berharga oleh banyak orang, namun agar alat apapun efektif, Anda harus terlebih dahulu memahami fungsinya, kapan menggunakannya dan kapan tidak menggunakannya. Kebocoran yang dibahas di sini menunjukkan bila rata-rata bergerak mungkin bukan alat yang efektif, seperti bila digunakan dengan sekuritas yang mudah menguap, dan bagaimana mereka dapat mengabaikan informasi statistik penting tertentu, seperti pola siklus. Hal ini juga dipertanyakan seberapa efektif rata-rata bergerak adalah untuk secara akurat menunjukkan tren harga. Mengingat kekurangannya, moving averages mungkin merupakan alat yang paling baik digunakan bersamaan dengan yang lain. Pada akhirnya, pengalaman pribadi akan menjadi indikator utama seberapa efektifnya portofolio mereka. (Untuk lebih, lihat Apakah Rata-rata Bergerak Adaptif Memimpin Untuk Hasil yang Lebih Baik)
Is-forex-worth-it
Trading-strategy-low-drawdown-forex