Bagaimana-untuk-menghitung-eksponensial-tertimbang-bergerak-rata-rata

Bagaimana-untuk-menghitung-eksponensial-tertimbang-bergerak-rata-rata

Option-trading-tips-gamma
Kami-capital-gain-tax-stock-options
Pilihan-oleh-sanjeev-kapoor-dubai-pusat perdagangan dunia


Trade-interceptor-forex-mobile-download Keluhan perdagangan online-akademi-india Layanan pilihan-berlangganan-kupon Pilihan-strategi-kalkulator Options-trading-course-reviews Options-day-trading-rules

Menjelajahi Rata-rata Moving Average yang Bergerak Rata-rata Volatilitas adalah ukuran risiko yang paling umum, namun ada dalam beberapa rasa. Dalam artikel sebelumnya, kami menunjukkan bagaimana cara menghitung volatilitas historis sederhana. (Untuk membaca artikel ini, lihat Menggunakan Volatilitas untuk Mengukur Risiko Masa Depan.) Kami menggunakan data harga saham Googles aktual untuk menghitung volatilitas harian berdasarkan data stok 30 hari. Pada artikel ini, kami akan memperbaiki volatilitas sederhana dan mendiskusikan rata-rata bergerak tertimbang eksponensial (eksploitatif bergerak rata-rata) (EWMA). Sejarah Vs. Volatilitas Tersirat Pertama, mari kita letakkan metrik ini menjadi sedikit perspektif. Ada dua pendekatan yang luas: volatilitas historis dan tersirat (atau implisit). Pendekatan historis mengasumsikan bahwa masa lalu adalah prolog kita mengukur sejarah dengan harapan itu bersifat prediktif. Sebaliknya volatilitas tersirat, mengabaikan sejarah yang dipecahkannya untuk volatilitas yang tersirat oleh harga pasar. Ia berharap bahwa pasar tahu yang terbaik dan harga pasar mengandung, bahkan secara implisit, merupakan perkiraan konsensus volatilitas. (Untuk pembacaan yang terkait, lihat Kegunaan dan Batas Volatilitasnya.) Jika kita berfokus hanya pada tiga pendekatan historis (di sebelah kiri di atas), mereka memiliki dua kesamaan: Hitunglah serangkaian pengembalian periodik Terapkan skema pembobotan Pertama, kita Hitung kembali periodik. Itu biasanya serangkaian pengembalian harian dimana masing-masing imbal hasil dinyatakan dalam istilah yang terus bertambah. Untuk setiap hari, kita mengambil log natural dari rasio harga saham (yaitu harga hari ini dibagi dengan harga kemarin, dan seterusnya). Ini menghasilkan serangkaian pengembalian harian, dari u i sampai u i-m. Tergantung berapa hari (m hari) yang kita ukur. Itu membawa kita pada langkah kedua: Di sinilah ketiga pendekatan berbeda. Pada artikel sebelumnya (Menggunakan Volatilitas Untuk Mengukur Risiko Masa Depan), kami menunjukkan bahwa di bawah beberapa penyederhanaan yang dapat diterima, varians sederhana adalah rata-rata pengembalian kuadrat: Perhatikan bahwa jumlah ini masing-masing dari pengembalian periodik, kemudian dibagi total oleh Jumlah hari atau pengamatan (m). Jadi, yang benar-benar hanya rata-rata kuadrat periodik kembali. Dengan kata lain, setiap kuadrat kembali diberi bobot yang sama. Jadi, jika alfa (a) adalah faktor pembobotan (khusus, 1m), maka varians sederhana terlihat seperti ini: EWMA Meningkatkan Varians Sederhana Kelemahan pendekatan ini adalah bahwa semua pengembalian mendapatkan bobot yang sama. Kembali ke masa lalu (sangat baru) tidak berpengaruh lagi terhadap varians daripada return bulan lalu. Masalah ini diperbaiki dengan menggunakan rata-rata pergerakan rata-rata tertimbang eksponensial (EWMA), di mana hasil yang lebih baru memiliki bobot lebih besar pada variansnya. Rata-rata pergerakan tertimbang eksponensial (EWMA) memperkenalkan lambda. Yang disebut parameter smoothing. Lambda harus kurang dari satu. Dengan kondisi seperti itu, daripada bobot yang sama, setiap kuadrat kembali dibobot oleh pengganda sebagai berikut: Misalnya, RiskMetrics TM, perusahaan manajemen risiko keuangan, cenderung menggunakan lambda 0,94, atau 94. Dalam kasus ini, yang pertama ( Paling akhir) kuadrat periodik kembali ditimbang oleh (1-0.94) (94) 0 6. Kuadrat berikutnya kembali hanyalah lambda-kelipatan dari berat sebelumnya dalam kasus ini 6 dikalikan 94 5.64. Dan hari ketiga berat sama dengan (1-0.94) (0.94) 2 5.30. Itulah makna eksponensial dalam EWMA: setiap bobot adalah pengganda konstan (yaitu lambda, yang harus kurang dari satu) dari berat hari sebelumnya. Hal ini memastikan varians yang berbobot atau bias terhadap data yang lebih baru. (Untuk mempelajari lebih lanjut, lihat Lembar Kerja Excel untuk Volatilitas Google). Perbedaan antara sekadar volatilitas dan EWMA untuk Google ditunjukkan di bawah ini. Volatilitas sederhana secara efektif membebani masing-masing dan setiap pengembalian periodik sebesar 0,1996 seperti yang ditunjukkan pada Kolom O (kami memiliki data harga saham dua tahun. Itu adalah 509 pengembalian harian dan 1509 0,1996). Tapi perhatikan bahwa Kolom P memberi bobot 6, lalu 5.64, lalu 5.3 dan seterusnya. Itulah satu-satunya perbedaan antara varians sederhana dan EWMA. Ingat: Setelah kita menghitung keseluruhan rangkaian (di Kolom Q), kita memiliki varians, yang merupakan kuadrat dari standar deviasi. Jika kita ingin volatilitas, kita perlu ingat untuk mengambil akar kuadrat varians itu. Apa perbedaan dalam volatilitas harian antara varians dan EWMA dalam kasus Googles Its signifikan: Variance sederhana memberi kita volatilitas harian sebesar 2,4 namun EWMA memberikan volatilitas harian hanya 1,4 (lihat spreadsheet untuk rinciannya). Rupanya, volatilitas Googles baru saja turun, oleh karena itu, varians sederhana mungkin sangat tinggi secara artifisial. Todays Varians Adalah Fungsi Varian Jurus Hari Ini, kami akan mempertimbangkan untuk menghitung deretan berat badan yang menurun secara eksponensial. Kami tidak akan melakukan matematika di sini, tapi salah satu fitur terbaik dari EWMA adalah keseluruhan rangkaian mudah direduksi menjadi formula rekursif: Rekursif berarti referensi varians hari ini (yaitu fungsi varians hari sebelumnya). Anda dapat menemukan formula ini di dalam spreadsheet juga, dan menghasilkan hasil yang sama persis dengan perhitungan longhand yang dikatakan: Variasi hari ini (di bawah EWMA) sama dengan varians kemarin (tertimbang oleh lambda) ditambah kembalinya kuadran kemarin (ditimbang oleh satu minus lambda). Perhatikan bagaimana kita hanya menambahkan dua istilah bersama: varians berbobot kemarin dan kemarin berbobot, kuadrat kembali. Meski begitu, lambda adalah parameter penghalusan kita. Lambda yang lebih tinggi (misalnya RiskMetrics 94) mengindikasikan peluruhan lambat dalam rangkaian - secara relatif, kita akan memiliki lebih banyak titik data dalam rangkaian dan akan jatuh lebih lambat. Di sisi lain, jika kita mengurangi lambda, kita mengindikasikan peluruhan yang lebih tinggi: bobotnya akan jatuh lebih cepat dan, sebagai akibat langsung dari pembusukan yang cepat, lebih sedikit titik data yang digunakan. (Dalam spreadsheet, lambda adalah masukan, jadi Anda bisa bereksperimen dengan sensitivitasnya). Ringkasan Volatilitas adalah deviasi standar instan dari stok dan metrik risiko yang paling umum. Ini juga merupakan akar kuadrat dari varians. Kita dapat mengukur varians secara historis atau implisit (volatilitas tersirat). Saat mengukur secara historis, metode termudah adalah varians sederhana. Tapi kelemahan dengan varians sederhana adalah semua kembali mendapatkan bobot yang sama. Jadi kita menghadapi trade-off klasik: kita selalu menginginkan lebih banyak data tapi semakin banyak data yang kita miliki, semakin banyak perhitungan kita yang terdilusi oleh data yang jauh (kurang relevan). Rata-rata pergerakan tertimbang eksponensial (EWMA) meningkat dengan varians sederhana dengan menetapkan bobot pada return periodik. Dengan melakukan ini, kita berdua bisa menggunakan ukuran sampel yang besar namun juga memberi bobot lebih besar pada hasil yang lebih baru. (Untuk melihat tutorial film mengenai topik ini, kunjungi Penyu Bionik.) Exponentially Weighted Moving Average (EWMA) adalah statistik untuk memantau proses yang rata-rata menghasilkan data dengan cara yang memberi bobot lebih sedikit pada data karena mereka lebih jauh. Dihapus pada waktunya Perbandingan bagan kontrol Shewhart dan teknik bagan kontrol EWMA Untuk teknik kontrol chart Shewhart, keputusan mengenai keadaan pengendalian proses setiap saat, (t), bergantung hanya pada pengukuran terbaru dari proses dan, tentu saja, Tingkat ketepatan perkiraan batas kontrol dari data historis. Untuk teknik kontrol EWMA, keputusan tergantung pada statistik EWMA, yang merupakan rata-rata tertimbang secara eksponensial dari semua data sebelumnya, termasuk pengukuran terbaru. Dengan pilihan faktor pembobotan, (lambda), prosedur kontrol EWMA dapat dibuat sensitif terhadap drift kecil atau bertahap dalam proses, sedangkan prosedur kontrol Shewhart hanya dapat bereaksi ketika titik data terakhir berada di luar batas kendali. Definisi EWMA Statistik yang dihitung adalah: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2,, ldot ,, n. Dimana (mbox 0) adalah rata-rata data historis (target) (Yt) adalah pengamatan pada waktu (t) (n) adalah jumlah pengamatan yang akan dipantau termasuk (mbox 0) (0 Interpretasi diagram kontrol EWMA Merah Titik adalah data mentah yang bergerigi adalah statistik EWMA dari waktu ke waktu. Bagan tersebut memberi tahu kita bahwa prosesnya terkendali karena semua (mbox t) berada di antara batas kontrol. Namun, tampaknya ada kecenderungan ke atas selama 5 Periode. Pendekatan EWMA memiliki satu fitur menarik: memerlukan sedikit data tersimpan. Untuk memperbarui perkiraan kami pada titik apapun, kita hanya memerlukan perkiraan sebelumnya dari varians rate dan nilai pengamatan terbaru. Tujuan sekunder dari EWMA adalah melacak Perubahan dalam volatilitas Untuk nilai-nilai kecil, pengamatan baru-baru ini mempengaruhi perkiraan segera.Untuk nilai mendekati satu, perkiraan akan berubah secara perlahan berdasarkan perubahan terkini pada pengembalian variabel yang mendasarinya. Database RiskMetrics (diproduksi oleh JP Morgan dan dipublikasikan ) Gunakan S EWMA dengan untuk memperbarui volatilitas harian. PENTING: Rumus EWMA tidak mengasumsikan tingkat varians jangka panjang yang panjang. Dengan demikian, konsep volatilitas mean reversion tidak tertangkap oleh EWMA. Model ARCHGARCH lebih cocok untuk tujuan ini. Tujuan sekunder dari EWMA adalah untuk melacak perubahan volatilitas, sehingga untuk nilai kecil, pengamatan baru-baru ini akan mempengaruhi estimasi tersebut segera, dan untuk nilai mendekati satu, perkiraan tersebut berubah secara perlahan terhadap perubahan terbaru pada tingkat pengembalian variabel yang mendasarinya. Database RiskMetrics (diproduksi oleh JP Morgan) dan dipublikasikan pada tahun 1994, menggunakan model EWMA untuk memperbarui perkiraan volatilitas harian. Perusahaan menemukan bahwa di berbagai variabel pasar, nilai ini memberikan perkiraan varians yang paling dekat dengan tingkat varians yang terwujud. Tingkat varians yang direalisasikan pada hari tertentu dihitung sebagai rata-rata tertimbang rata-rata pada 25 hari berikutnya. Demikian pula, untuk menghitung nilai optimal lambda untuk kumpulan data kami, kita perlu menghitung volatilitas yang direalisasikan pada setiap titik. Ada beberapa metode, jadi pilih satu. Selanjutnya, hitung jumlah kuadrat kesalahan (SSE) antara perkiraan EWMA dan volatilitas yang terealisasi. Akhirnya, minimalkan SSE dengan memvariasikan nilai lambda. Kedengarannya sederhana. Tantangan terbesar adalah menyetujui algoritma untuk menghitung volatilitas yang terealisasi. Misalnya, orang-orang di RiskMetrics memilih 25 hari berikutnya untuk menghitung tingkat varians realisasi. Dalam kasus Anda, Anda dapat memilih algoritma yang menggunakan harga Daily Volume, HILO andor OPEN-CLOSE. Q 1: Bisakah kita menggunakan EWMA untuk memperkirakan (atau memperkirakan) volatilitas lebih dari satu langkah di depan Representasi volatilitas EWMA tidak mengasumsikan fluktuasi rata-rata jangka panjang, dan dengan demikian, untuk perkiraan horizon di luar satu langkah, EWMA mengembalikan sebuah konstanta nilai:
Opsi-trading-disiplin
Ig-index-option-trading