Bergerak rata-rata terpusat

Bergerak rata-rata terpusat

Trading-system-review-forum
Order-book-fx-forex-factory
Moving-average-di-forex


Apa-perbedaan-antara-trading-dan-judi Pindah-rata-cermin Trading-strategi-wiki Online-stock-market-trading-game Pokemon-trading-card-game-online-plasma-storm Online-trading-academy-bloomington-mn

1. Matematika (Matematika) a. Titik tengah garis atau gambar, esp titik dalam lingkaran atau bola yang berjarak sama dari titik manapun pada lingkar atau permukaan b. Titik di dalam tubuh yang melaluinya gaya tertentu dapat dianggap bertindak, seperti pusat gravitasi 2. (Fisika Umum) titik, sumbu, atau poros tentang mana tubuh berputar 3. suatu titik, area, atau bagian yang Kira-kira berada di tengah area atau volume yang lebih besar 4. tempat di mana beberapa aktivitas tertentu terkonsentrasi: sebuah pusat perbelanjaan. 5. Seseorang atau benda yang menjadi fokus perhatian 6. tempat aktivitas atau pengaruhnya: pusat kekuasaan. 7. seseorang, kelompok, kebijakan, atau benda di tengah 8. (Politik, Politik Diplomasi) (biasanya modal) politik a. Partai politik atau kelompok yang menyukai moderasi, esp anggota moderat majelis legislatif b. (Sebagai pengubah): aliansi Pusat-Kiri. 9. (Fisiologi) fisiol setiap bagian dari sistem saraf pusat yang mengatur fungsi tertentu: pusat pernafasan. 10. (Teknik Mesin) sebuah bar dengan titik kerucut di mana benda atau bagian dapat diputar atau ditempa 11. (Teknik Mesin) tanda pukulan atau lubang kerucut kecil di bagian yang akan dibor, yang memungkinkan titik bor Berada di lokasi yang akurat 12. (General Sporting Terms) olahraga a. Pemain yang bermain di tengah garis depan b. Tindakan atau turunan dari bola melewati dari sayap ke tengah lapangan, pengadilan, dll 13. (bola basket) bola basket a. Posisi pemain yang melompat untuk bola di awal permainan b. Pemain di posisi ini 14. (Panahan) panahan a. Cincin di sekitar mata banteng b. Sebuah tembakan yang menyentuh cincin ini 15. bergerak menuju, menandai, meletakkan, atau berada di pusat 16. (tr) untuk fokus atau mempertemukannya: untuk memusatkan pikiran. 17. (sering foll dengan: on) untuk memiliki sebagai pokok pandang atau tema: novel yang berpusat pada kejahatan. 18. (Teknik Mesin) (tr) untuk menyesuaikan atau menemukan (benda kerja atau bagian) dengan menggunakan pusat 19. (intr foll by on or round) untuk dimiliki sebagai pusat 20. (General Sporting Terms) (tr) olahraga yang akan dilalui (Bola) ke tengah lapangan atau lapangan C14: dari centrum Latin titik stasioner kompas, dari jarum kentron Yunani, dari kentein hingga tusukan 1. (Placename) Pusat (snt) wilayah tengah Australia yang jarang dihuni 2. (Placename) sebuah wilayah di Prancis tengah: umumnya dataran rendah yang dikeringkan terutama oleh Sungai Loire, Loir, dan Cher cen8226tre Cen8226 sebuah wilayah metropolitan di Prancis tengah, SW Paris. 2,371,000 15,390 sq mi. (39.062 km persegi). Bagian tengah dari bentuk dua dimensi atau daerah adalah bagian yang terjauh dari sisi, tepinya, atau batasannya. Di tengah halaman adalah pohon cedar yang besar. Foster sedang berdiri di tengah ruangan. Pusat digunakan dengan cara yang sama, namun biasanya mengacu pada titik atau posisi yang lebih tepat. Misalnya, dalam matematika Anda berbicara tentang pusat lingkaran, bukan di tengah. . Pusat topan. Dalam bahasa Inggris Amerika, kata ini dieja. Di tengah monumen ada sebuah foto. 3. Makna lain dari tengah Tengah jalan atau sungai adalah bagian yang terjauh dari sisi atau banknya. . Garis putih dilukis di sepanjang jalan raya. Kami berhasil menarik sandbank di tengah sungai. Bagian tengah suatu peristiwa atau periode waktu adalah periode yang setengah jalan antara awal dan akhir. Kami mendarat di Kanton di tengah badai yang deras. . Pertengahan Desember. Past participle: berpusat Gerund: centering 1. titik tengah, atau tengah titik atau titik terjauh dari tepi. Pusat lingkaran pusat kota. Middelpunt, middel sentrum centro sted, centrum der Mittelpunkt midtepostt sentrum sentro keskpunkt, keskus keskusta center sredite kzppont titik pusat mija centre centro centimeter, vidurys centrs bahagian tengah middelpunt. Centrum tengah malam Midtpunkt Sentrum centrum centro centru stred, centrum sredie centar centrum merkez trung tm 2. tempat yang memiliki, atau dirancang untuk, aktivitas tertentu, minat dll. Pusat industri pusat perbelanjaan pusat olahraga. Sentrum centro stedisko, pusat centrum das Zentrum - pusat sentro keskus keskus center sredite, sredina kzpont pusat sentris sentra sentra pusat centrum pusat sentrum sentris centr centru stredisko sredie, pusat centar pusat merkez trung tm 3. titik utama (menarik dll). Pusat perhatian Punt, centre centro tit der Mittelpunkt hoved-pusat centro keskpunkt keskipiste center sredite kzppont pusat aal-, megin cent centr centr tertumpu middelpunt midtpunkt. Sentrum centrum Rodek centro centru aisko sredie sredite medelpunkt, centrum ilgi merkezioda, im mu cht 1. ke tempat, atau berada di pusat. Sentreer centralizar (-se) umstit, lakukan centra, bt v centru di den Mittelpunkt stellen anbringe i midten anbringe midt p centrere centrar keskpunkti asetama, keskpunktis olema keskitt centrer, centrirati kzppontba llt berada di tengah setjafra miju, leggja herslu centrare. Essere al centro padti vidur, bti viduryje koncentrt centrt di tengah-tengah di het midden plaatsen, zijn sentrere. Sette i midten zerodkowa centralizar (-se) a centra () umiestni do centra oleh stredom biti v srediu centrirati stlla (stta) i mittpunkten, st (sitta) i mittpunkten, centrera ortalamak, ortaya yerletirmek. () T vo trung tm. 2. (dengan on) untuk berkonsentrasi bulat. Rencananya selalu berpusat pada anaknya. Toegespits wees op () centrar-se soustedit (se) na konzentrieren koncentrere centrere centrarse (millegi, kellegi mber) keerlema ​​keskitty se concentrer biti usredotoen vmre sszpontosul terpusat snast um accentrarsi () suktis apie, koncentruotis koncentrties tumpuan zich concentreren op samle seg om. Konsentrere seg om. Dreie seg om skupia si centrar-se a se concentra (asupra) sstredi sa (na) osredotoiti se centrirati kretsa kring etrafnda toplanmak younlamak (), () tp trung Tautan ke halaman ini: Dataran Rendah berpusat di sekitar dua bersaudara yang lahir hanya lima belas bulan Terpisah, yang pada tahun 1960 tertarik pada gerakan berlawanan kutub. Hal-hal itu berpusat pada kepribadian yang lebih besar: Kobe, Shaq and Phil. Dalam mengejar dua topik penelitian utama ini, BTRC bertujuan untuk mengembangkan proses konversi biomassa praktis yang cukup efisien untuk mempromosikan substitusi sumber daya fosil yang berpusat di sekitar minyak bumi dan untuk berkontribusi pada pembentukan masyarakat daur ulang energi. Bisnis dengan budaya perusahaan yang berpusat pada cita-cita tinggi menghadapi siklus yang tak terelakkan untuk menjadi merek ikonik. 95) menyediakan volume kedua yang mengadaptasi tiga cerita Tionghoa yang berpusat di seputar perjuangan unik sang seniman. Yang juga dipresentasikan adalah Laporan Penelitian AFS yang berpusat di seputar Transmisi Tekanan Rendah Paduan Magnesium AZ91 dan AM50, oleh J. Buku ini terutama berpusat pada tujuh peraturan, termasuk membangun fondasi yang kaya nilai, memperluas lingkaran Anda, menciptakan peluang bersama, Dan menciptakan kembali networld Anda. Pada saat empat besar - NBC, CBS, ABC, dan Fox - hanya memiliki sedikit pertunjukan yang berpusat di sekitar kulit hitam, UPN dan WB telah menerapkan program mereka dengan komedi yang menampilkan orang-orang Amerika Afrika. Jika cocok untuk warna bercahaya yang tidak alami, Anda mungkin mengira Anda melihat riak-riak yang berpusat di sekitar sepasang batuan yang hampir tidak terendam di genangan air. Landasan lain dari program revitalisasi untuk Nassau County berpusat di seputar promosi HUB Nassau, pusat komersial dan keuangan County, yang akan segera dihubungkan oleh jaringan transportasi permukaan darat yang baru yang memberikan alternatif bagi satu mobil pengemudi tunggal. Di Detroit yang lebih besar, kompensasi berpusat sekitar 25.000 sampai 30.000 per tahun. Rata-rata Mutasi: Apa itu dan Cara Menghitungnya Tonton video atau baca artikel di bawah ini: Rata-rata bergerak adalah teknik untuk mendapatkan gambaran keseluruhan tentang tren dalam kumpulan data. Itu adalah rata-rata dari setiap subset dari angka. Rata-rata bergerak sangat berguna untuk meramalkan tren jangka panjang. Anda bisa menghitungnya untuk jangka waktu tertentu. Misalnya, jika Anda memiliki data penjualan selama dua puluh tahun, Anda dapat menghitung rata-rata pergerakan lima tahun, rata-rata pergerakan empat tahun, rata-rata pergerakan tiga tahun dan sebagainya. Analis pasar saham akan sering menggunakan rata-rata pergerakan 50 atau 200 hari untuk membantu mereka melihat tren di pasar saham dan (semoga) meramalkan posisi saham. Rata-rata mewakili nilai 8220middling8221 dari serangkaian angka. Rata-rata bergerak sama persis, namun rata-rata dihitung beberapa kali untuk beberapa himpunan bagian data. Misalnya, jika Anda menginginkan rata-rata pergerakan dua tahun untuk kumpulan data dari tahun 2000, 2001, 2002 dan 2003, Anda akan menemukan rata-rata untuk subset 20002001, 20012002 dan 20022003. Rata-rata pergerakan biasanya diplot dan paling baik divisualisasikan. Menghitung Contoh Rata-rata Bergerak 5 Tahun Contoh Soal: Hitunglah rata-rata pergerakan lima tahun dari kumpulan data berikut: (4M 6M 5M 8M 9M) ​​5 6.4M Penjualan rata-rata untuk subset kedua selama lima tahun (2004 8211 2008). Yang berpusat di sekitar tahun 2006, adalah 6.6M: (6M 5M 8M 9M 5M) 5 6.6M Penjualan rata-rata untuk subset ketiga selama lima tahun (2005 8211 2009). Berpusat di sekitar tahun 2007, adalah 6.6M: (5M 8M 9M 5M 4M) 5 6.2M Lanjutkan menghitung setiap rata-rata lima tahun, sampai Anda mencapai akhir himpunan (2009-2013). Ini memberi Anda serangkaian poin (rata-rata) yang dapat Anda gunakan untuk merencanakan grafik rata-rata bergerak. Tabel Excel berikut menunjukkan rata-rata bergerak yang dihitung untuk 2003-2012 bersamaan dengan kumpulan data yang tersebar: Tonton video atau baca langkah-langkah di bawah ini: Excel memiliki add-in yang kuat, Data Analysis Toolpak (cara memuat Data Analysis Toolpak) yang memberi Anda banyak pilihan tambahan, termasuk fungsi moving average otomatis. Fungsi tidak hanya menghitung rata-rata bergerak untuk Anda, namun juga grafik data asli pada saat bersamaan. Menghemat banyak penekanan tombol. Excel 2013: Langkah Langkah 1: Klik tab 8220Data8221 dan kemudian klik 8220Data Analysis.8221 Langkah 2: Klik 8220Moving average8221 dan kemudian klik 8220OK.8221 Langkah 3: Klik kotak 8220Input Range8221 dan kemudian pilih data Anda. Jika Anda menyertakan tajuk kolom, pastikan Anda mencentang Label di kotak Row pertama. Langkah 4: Ketik interval ke dalam kotak. Interval adalah berapa banyak poin sebelumnya yang ingin Anda gunakan Excel untuk menghitung rata-rata bergerak. Sebagai contoh, 822058221 akan menggunakan 5 titik data sebelumnya untuk menghitung rata-rata untuk setiap titik berikutnya. Semakin rendah interval, semakin dekat rata-rata pergerakan Anda ke kumpulan data asli Anda. Langkah 5: Klik di kotak 8220Output Range8221 dan pilih area pada lembar kerja yang Anda inginkan hasilnya muncul. Atau, klik tombol radio 8220New worksheet8221. Langkah 6: Centang kotak 8220Chart Output8221 jika Anda ingin melihat grafik kumpulan data Anda (jika Anda lupa melakukan ini, Anda dapat selalu kembali dan menambahkannya atau memilih grafik dari tab 8220Insert8221.8221 Langkah 7: Tekan 8220OK .8221 Excel akan mengembalikan hasil di area yang Anda tentukan di Langkah 6. Tonton video, atau baca langkah-langkah di bawah ini: Contoh masalah: Hitung moving average tiga tahun di Excel untuk data penjualan berikut: 2003 (33M), 2004 (22M), 2005 (36M), 2006 (34M), 2007 (43M), 2008 (39M), 2009 (41M), 2010 (36M), 2011 (45M), 2012 (56 juta), 2013 (64 juta). 1: Ketik data Anda menjadi dua kolom di Excel Kolom pertama harus memiliki kolom tahun dan kolom kedua dengan data kuantitatif (dalam contoh ini masalah, angka penjualan). Pastikan tidak ada baris kosong dalam data sel Anda. : Hitunglah rata-rata tiga tahun pertama (2003-2005) untuk data.Untuk contoh ini, ketik 8220 (B2B3B4) 38221 ke dalam sel D3 Menghitung rata-rata pertama Langkah 3: Tarik kotak di sudut kanan bawah d Miliki untuk memindahkan formula ke semua sel di kolom. Ini menghitung rata-rata untuk tahun-tahun berikutnya (misalnya 2004-2006, 2005-2007). Menyeret formula. Langkah 4: (Opsional) Buat grafik. Pilih semua data di lembar kerja. Klik tab 8220Insert8221, lalu klik 8220Scatter, 8221 lalu klik 8220Scatter dengan garis dan spidol yang halus.8221 Grafik rata-rata bergerak Anda akan muncul di lembar kerja. Lihat saluran YouTube kami untuk mendapatkan lebih banyak statistik bantuan dan tip Moving Average: Apa itu dan Cara Menghitungnya terakhir diubah: 8 Januari 2016 oleh Andale 22 pemikiran tentang ldquo Moving Average: Apa itu dan Cara Menghitungnya rdquo Ini adalah Sempurna dan sederhana untuk berasimilasi. Terima kasih untuk pekerjaan ini sangat jelas dan informatif. Pertanyaan: Bagaimana seseorang menghitung rata-rata pergerakan 4 tahun Tahun berapa pusat pergerakan rata-rata 4 tahun di atasnya akan berpusat pada akhir tahun kedua (yaitu 31 Desember). Dapatkah saya menggunakan penghasilan rata-rata untuk meramalkan penghasilan masa depan siapa tahu tentang berpusat berarti tolong beritahu saya jika ada yang tahu. Ini berarti kita harus mempertimbangkan 5 tahun untuk mendapatkan mean yang ada di center.Then bagaimana dengan sisa tahun jika kita ingin mendapatkan rata-rata tahun 20118230 karena kita tidak memiliki nilai lebih lanjut setelah 2012, lalu bagaimana kita menghitungnya? Tidak ada info lagi, tidak mungkin untuk menghitung MA 5 tahun untuk 2011. Anda bisa mendapatkan rata-rata pergerakan dua tahun sekalipun. Hai, terima kasih atas videonya. Namun, satu hal tidak jelas. Bagaimana melakukan ramalan untuk bulan-bulan mendatang Video menunjukkan perkiraan untuk bulan-bulan dimana data sudah tersedia. Hai, Raw, I8217m sedang mengembangkan artikel untuk memasukkan peramalan. Prosesnya sedikit lebih rumit daripada menggunakan data masa lalu sekalipun. Lihatlah artikel Duke University ini, yang menjelaskannya secara mendalam. Salam, Stephanie terima kasih untuk penjelasan yang jelas. Hai Tidak dapat menemukan tautan ke artikel Universitas Duke yang disarankan. Permintaan untuk memposting link lagiMoving model pemulusan rata-rata dan eksponensial Sebagai langkah pertama dalam bergerak melampaui model mean, model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat diekstrapolasikan dengan menggunakan model rata-rata bergerak atau pemulusan. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotsmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat perataan (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata-rata yang paling sederhana adalah. Rata-rata Bergerak Sederhana (rata-rata tertimbang): Prakiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t- (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model rata-rata bergerak sederhana (SMA) sama dengan model jalan acak (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk mendapatkan kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil rata-rata. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia memilih sebagian besar quot quotisequot di Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang lebih halus: Rata-rata pergerakan sederhana 5-langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai yang terakhir diamati, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian dapat menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangkan kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata pergerakan sederhana 9-term, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, usia rata-rata meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata bergerak 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 -term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam ramalan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapat bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan perkiraan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam ramalan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, bila 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada perkiraan rata-rata bergerak sederhana (SMA) karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada tingkat Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang masuk akal, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model jalan acak. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linier konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena opsi penyesuaian musiman dinonaktifkan saat jenis model diatur ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang tepat per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau paling tidak tidak terlalu buruk untuk 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan kecenderungan lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada titik waktu yang berbeda. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot dari model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke rangkaian Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat lagi, di bawah sederhana Eksponensial smoothing, ini akan menjadi ramalan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi pemulusan eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Lens menghitung perkiraan tingkat dan kecenderungan lokal dengan menghaluskan data terbaru, namun kenyataan bahwa hal itu terjadi dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat t, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Dapat diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian rata-rata umur data yang digunakan dalam memperkirakan tingkat lokal seri, usia rata-rata data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata pukul 10.006 125. Ini adalah angka yang sangat tepat karena keakuratan perkiraan 946 bukan benar-benar 3 angka desimal, namun memiliki tatanan umum yang sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir seri daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang wajar untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat menyesuaikan konstanta pemulusan tren secara manual sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi terbaik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, smoothing eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi horisontal kuotometer. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Ada kemungkinan untuk menghitung interval kepercayaan di sekitar perkiraan jangka panjang yang dihasilkan oleh model penghalusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat saat perangkat lunak daripada smoothing sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke bagian atas halaman.)
Pedagang valas di seluruh dunia
Trading-system-project