Contoh perkiraan rata-rata bergerak yang sederhana

Contoh perkiraan rata-rata bergerak yang sederhana

Rsi-strategi
Statistik rata-rata tertimbang-tertimbang
Vxx-trading-strategy


Trading-system-mingguan Pialang-pilihan-broker-2015 Indeks Jp-morgan-forex-volatility-index Uml-diagram-untuk-sistem perdagangan luar negeri Option-trading-training-in-india Bagaimana-banyak-uang-untuk-mulai-perdagangan-pilihan

Simple Moving Average - SMA BREAKING DOWN Simple Moving Average - SMA Rata-rata bergerak sederhana dapat disesuaikan sehingga bisa dihitung untuk periode waktu yang berbeda, cukup dengan menambahkan harga penutupan keamanan untuk sejumlah periode waktu dan kemudian membagi Jumlah ini dengan jumlah periode waktu, yang memberikan harga rata-rata keamanan selama periode waktu tersebut. Rata-rata bergerak sederhana menghaluskan volatilitas, dan membuatnya lebih mudah untuk melihat tren harga suatu keamanan. Jika nilai rata-rata bergerak sederhana naik, ini berarti harga keamanan semakin meningkat. Jika mengarah ke bawah berarti harga keamanan menurun. Semakin panjang jangka waktu untuk moving average, semakin halus moving average yang sederhana. Rata-rata pergerakan jangka pendek lebih mudah berubah, namun bacaannya lebih mendekati data sumber. Signifikansi Analitis Moving averages adalah alat analisis penting yang digunakan untuk mengidentifikasi tren harga saat ini dan potensi perubahan dalam tren yang telah mapan. Bentuk paling sederhana menggunakan rata-rata bergerak sederhana dalam analisis adalah menggunakannya untuk mengidentifikasi dengan cepat apakah keamanan dalam tren naik atau tren turun. Alat analisis lain yang populer, walaupun sedikit lebih kompleks, adalah membandingkan rata-rata bergerak sederhana dengan masing-masing yang mencakup rentang waktu yang berbeda. Jika rata-rata bergerak sederhana jangka pendek berada di atas rata-rata jangka panjang, uptrend diharapkan terjadi. Di sisi lain, rata-rata jangka panjang di atas rata-rata jangka pendek menandakan pergerakan turun dalam tren. Pola Perdagangan Populer Dua pola perdagangan populer yang menggunakan moving average sederhana mencakup salib kematian dan salib emas. Salib kematian terjadi saat rata-rata pergerakan sederhana 50 hari di bawah rata-rata pergerakan 200 hari. Ini dianggap sebagai sinyal bearish, sehingga kerugian lebih lanjut di simpan. Salib emas terjadi ketika rata-rata pergerakan jangka pendek di atas rata-rata bergerak jangka panjang. Diperkuat oleh volume perdagangan yang tinggi, ini dapat memberi sinyal keuntungan lebih lanjut di toko. Perkiraan Perhitungan Contoh A.1 Metode Perhitungan Prakiraan Dua belas metode untuk menghitung perkiraan tersedia. Sebagian besar metode ini menyediakan kontrol pengguna terbatas. Misalnya, bobot yang ditempatkan pada data historis terkini atau rentang tanggal data historis yang digunakan dalam perhitungan mungkin ditentukan. Contoh berikut menunjukkan prosedur perhitungan untuk masing-masing metode peramalan yang ada, dengan data set identik. Contoh berikut menggunakan data penjualan 2004 dan 2005 yang sama untuk menghasilkan perkiraan penjualan tahun 2006. Selain perhitungan perkiraan, masing-masing contoh mencakup perkiraan simulasi tahun 2005 untuk periode tiga bulan penyimpanan (opsi pemrosesan 19 3) yang kemudian digunakan untuk persentase akurasi dan perhitungan deviasi absolut rata-rata (penjualan aktual dibandingkan dengan perkiraan simulasi). A.2 Kriteria Evaluasi Kinerja Prakiraan Tergantung pada pilihan pilihan pemrosesan Anda dan pada tren dan pola yang ada dalam data penjualan, beberapa metode peramalan akan berkinerja lebih baik daripada yang lain untuk kumpulan data historis tertentu. Metode peramalan yang sesuai untuk satu produk mungkin tidak sesuai untuk produk lain. Hal ini juga tidak mungkin bahwa metode peramalan yang memberikan hasil yang baik pada satu tahap siklus hidup produk akan tetap sesuai sepanjang keseluruhan siklus kehidupan. Anda dapat memilih antara dua metode untuk mengevaluasi kinerja metode peramalan saat ini. Ini adalah Mean Absolute Deviation (MAD) dan Persen of Accuracy (POA). Kedua metode evaluasi kinerja ini memerlukan data penjualan historis untuk jangka waktu yang ditentukan pengguna. Periode waktu ini disebut periode holdout atau periode yang paling sesuai (PBF). Data dalam periode ini digunakan sebagai dasar untuk merekomendasikan metode peramalan mana yang akan digunakan dalam membuat perkiraan proyeksi berikutnya. Rekomendasi ini khusus untuk setiap produk, dan mungkin berubah dari satu perkiraan generasi ke generasi berikutnya. Dua metode evaluasi kinerja perkiraan ditunjukkan di halaman berikut contoh dari dua belas metode peramalan. A.3 Metode 1 - Persentase Tertentu Selama Tahun Terakhir Metode ini mengalikan data penjualan dari tahun sebelumnya oleh faktor yang ditentukan pengguna misalnya, 1,10 untuk kenaikan 10, atau 0,97 untuk penurunan 3. Riwayat penjualan yang disyaratkan: Satu tahun untuk menghitung perkiraan ditambah jumlah waktu yang ditentukan pengguna untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.4.1 Prakiraan Perhitungan Rentang sejarah penjualan digunakan dalam menghitung faktor pertumbuhan (opsi pemrosesan 2a) 3 dalam contoh ini. Jumlahkan tiga bulan terakhir tahun 2005: 114 119 137 370 Jumlah tiga bulan yang sama untuk tahun sebelumnya: 123 139 133 395 Faktor yang dihitung 370395 0,9367 Hitung prakiraan: penjualan Januari 128 penjualan di 1289367 119.8036 atau sekitar 120 Februari, 2005 penjualan 117 0,9367 109,5939 atau sekitar 110 Maret, 2005 penjualan 115 0.9367 107.7205 atau sekitar 108 A.4.2 Perhitungan Prakiraan Simulasi Jumlah tiga bulan di tahun 2005 sebelum periode holdout (Juli, Agustus, September): 129 140 131 400 Jumlah tiga bulan yang sama untuk Tahun sebelumnya: 141 128 118 387 Faktor yang diperhitungkan 400387 1.033591731 Perhitungan perkiraan simulasi: penjualan Oktober 123 1.033591731 127.13178 November, 2004 penjualan 139 1.033591731 143.66925 Desember 2004 penjualan 133 1.033591731 137.4677 A.4.3 Persen Perhitungan Akurasi POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Perhitungan Deviasi Absolut Mutual MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metode 3 - Tahun lalu sampai Tahun Ini Metode ini mengumpulkan data penjualan dari tahun sebelumnya sampai tahun depan. Riwayat penjualan yang disyaratkan: Satu tahun untuk menghitung perkiraan ditambah jumlah periode waktu yang ditentukan untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.6.1 Prakiraan Perhitungan Jumlah periode yang harus dimasukkan rata-rata (opsi pemrosesan 4a) 3 pada contoh ini Untuk setiap bulan perkiraan, rata-rata data tiga bulan sebelumnya. Perkiraan Januari: 114 119 137 370 370, 370 3 123.333 atau 123 ramalan Februari: 119 137 123 379, 379 3 126,333 atau 126 perkiraan bulan Maret: 137 123 126 379, 386 3 128,667 atau 129 A.6.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2005 (129 140 131) 3 133.3333 November 2005 penjualan (140 131 114) 3 128.3333 Penjualan pada bulan Desember 2005 (131 114 119) 3 121.3333 A.6.3 Persen Perhitungan Akurasi POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mean Mutlak Perhitungan Deviasi MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metode 5 - Pendekatan Linier Linear Approximation menghitung tren berdasarkan dua titik data penjualan historis. Kedua titik tersebut menentukan garis lurus yang diproyeksikan ke masa depan. Gunakan metode ini dengan hati-hati, perkiraan jangka panjang diimbangi oleh perubahan kecil hanya dalam dua titik data. Diperlukan riwayat penjualan: Jumlah periode yang termasuk dalam regresi (opsi pemrosesan 5a), ditambah 1 ditambah jumlah periode waktu untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.8.1 Prakiraan Perhitungan Jumlah periode yang termasuk dalam regresi (opsi pemrosesan 6a) 3 pada contoh ini Untuk setiap bulan perkiraan, tambahkan kenaikan atau penurunan selama periode yang ditentukan sebelum periode holdout periode sebelumnya. Rata-rata tiga bulan sebelumnya (114 119 137) 3 123.3333 Ringkasan tiga bulan sebelumnya dengan bobot yang dipertimbangkan (114 1) (119 2) (137 3) 763 Perbedaan antara nilai 763 - 123.3333 (1 2 3) 23 Rasio ( 12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 232 11.5 Value2 Rasio average - value1 123.3333 - 11.5 2 100.3333 Prakiraan (1 n) nilai1 nilai2 4 11.5 100.3333 146.333 atau 146 Prakiraan 5 11.5 100.3333 157.8333 atau 158 Prakiraan 6 11.5 100.3333 169.3333 Atau 169 A.8.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2004: Rata-rata tiga bulan sebelumnya (129 140 131) 3 133.3333 Ringkasan tiga bulan sebelumnya dengan bobot yang dipertimbangkan (129 1) (140 2) (131 3) 802 Perbedaan antara Nilai 802 - 133.3333 (1 2 3) 2 Rasio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 22 1 Value2 Rasio average - value1 133.3333 - 1 2 131.3333 Prakiraan (1 n) value1 value2 4 1 131.3333 135.3333 November 2004 penjualan Rata-rata tiga bulan sebelumnya (140 131 114) 3 128.3333 Ringkasan tiga bulan sebelumnya dengan berat yang dipertimbangkan (140 1) (131 2) (114 3) 744 Perbedaan antara nilai 744 - 128.3333 (1 2 3) -25.9999 Value1 DifferenceRatio -25.99992 -12.9999 Value2 Average - value1 ratio 128.3333 - (-12.9999) 2 154.3333 Prakiraan 4 -12.9999 154.3333 102.3333 Penjualan Desember 2004 Rata-rata dari tiga bulan sebelumnya (131 114 119) 3 121.3333 Ringkasan tiga bulan sebelumnya dengan mempertimbangkan bobot ( 131 1) (114 2) (119 3) 716 Perbedaan antara nilai 716 - 121.3333 (1 2 3) -11.9999 Value1 DifferenceRatio -11.99992 -5.9999 Value2 Rasio average - value1 121.3333 - (-5.9999) 2 133.3333 Prakiraan 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Persen Perhitungan Akurasi POA (135.33 102.33 109.33) (114 119 137) 100 93,78 A.8,4 Perhitungan Deviasi Absolut Mutual MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Metode 7 - Secon D Degree Approximation Regresi Linier menentukan nilai a dan b dalam rumus ramalan Y a bX dengan tujuan untuk menyesuaikan garis lurus dengan data riwayat penjualan. Pendekatan Gelar Kedua serupa. Namun, metode ini menentukan nilai a, b, dan c dalam rumus ramalan Y a bX cX2 dengan tujuan untuk menyesuaikan kurva dengan data riwayat penjualan. Metode ini mungkin berguna saat produk berada dalam transisi antara tahap siklus hidup. Misalnya, ketika produk baru bergerak dari pengenalan tahap pertumbuhan, tren penjualan mungkin akan meningkat. Karena istilah orde kedua, ramalan dapat dengan cepat mendekati tak terhingga atau turun menjadi nol (tergantung pada apakah koefisien c positif atau negatif). Oleh karena itu, metode ini hanya berguna dalam jangka pendek. Perkiraan spesifikasi: Rumus menemukan a, b, dan c agar sesuai dengan kurva sampai tiga titik. Anda menentukan n dalam opsi pemrosesan 7a, jumlah periode waktu data untuk mengumpulkan ke masing-masing dari tiga titik. Dalam contoh ini n 3. Oleh karena itu, data penjualan aktual untuk bulan April sampai Juni digabungkan ke poin pertama, Q1. Juli sampai September ditambahkan bersama untuk menciptakan Q2, dan Oktober sampai Desember ke Q3. Kurva akan disesuaikan dengan tiga nilai Q1, Q2, dan Q3. Diperlukan riwayat penjualan: 3 n periode untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (PBF). Jumlah periode untuk memasukkan (opsi pemrosesan 7a) 3 dalam contoh ini Gunakan tiga bulan sebelumnya (3 n) bulan dalam blok tiga bulan: Q1 (Apr - Jun) 125 122 137 384 Q2 (Jul - Sep) 129 140 131 400 Q3 ( Okt - Dec) 114 119 137 370 Langkah selanjutnya adalah menghitung tiga koefisien a, b, dan c yang akan digunakan dalam rumus peramalan Y a bX cX2 (1) Q1 a bX cX2 (di mana X 1) abc (2) Q2 A bX cX2 (di mana X 2) a 2b 4c (3) Q3 a bX cX2 (di mana X 3) a 3b 9c Selesaikan tiga persamaan secara simultan untuk menemukan b, a, dan c: kurangi persamaan (1) dari persamaan (2) Dan memecahkan untuk b (2) - (1) Q2 - Q1 b 3c Mengganti persamaan ini untuk b ke persamaan (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Akhirnya, ganti persamaan ini untuk a dan b ke Persamaan (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Metode Pendekatan Derajat Gelar Kedua menghitung a, b, dan c sebagai berikut: Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Januari sampai perkiraan bulan Maret (X4): (322 340 - 368) 3 2943 98 Per periode April sampai ramalan bulan Juni (X5): (322 425 - 575) 3 57.333 atau 57 per periode Juli sampai perkiraan bulan September (X6): (322 510 - 828) 3 1,33 atau 1 per periode Oktober sampai Desember (X7) (322 599 - 11273 -70 A.9.2 Simulasi Prakiraan Perhitungan Penjualan Oktober, November dan Desember 2004: Q1 (Jan - Mar) 360 Q2 (Apr - Jun) 384 Q3 (Jul - Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9,3 Persen Perhitungan Akurasi POA (136 136 136) 110.17 A.9.4 Perhitungan Deviasi Absolut Mutual MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Metode 8 - Metode Fleksibel Metode Fleksibel (Persen Lebih dari 10 Bulan Sebelumnya) serupa dengan Metode 1, Persen dari Tahun Terakhir. Kedua metode tersebut melipatgandakan data penjualan dari periode waktu sebelumnya oleh faktor yang ditentukan pengguna, lalu memproyeksikan hasilnya ke masa depan. Dalam metode Percent Over Las