Contoh perkiraan rata-rata bergerak yang sederhana

Contoh perkiraan rata-rata bergerak yang sederhana

Rsi-strategi
Statistik rata-rata tertimbang-tertimbang
Vxx-trading-strategy


Trading-system-mingguan Pialang-pilihan-broker-2015 Indeks Jp-morgan-forex-volatility-index Uml-diagram-untuk-sistem perdagangan luar negeri Option-trading-training-in-india Bagaimana-banyak-uang-untuk-mulai-perdagangan-pilihan

Simple Moving Average - SMA BREAKING DOWN Simple Moving Average - SMA Rata-rata bergerak sederhana dapat disesuaikan sehingga bisa dihitung untuk periode waktu yang berbeda, cukup dengan menambahkan harga penutupan keamanan untuk sejumlah periode waktu dan kemudian membagi Jumlah ini dengan jumlah periode waktu, yang memberikan harga rata-rata keamanan selama periode waktu tersebut. Rata-rata bergerak sederhana menghaluskan volatilitas, dan membuatnya lebih mudah untuk melihat tren harga suatu keamanan. Jika nilai rata-rata bergerak sederhana naik, ini berarti harga keamanan semakin meningkat. Jika mengarah ke bawah berarti harga keamanan menurun. Semakin panjang jangka waktu untuk moving average, semakin halus moving average yang sederhana. Rata-rata pergerakan jangka pendek lebih mudah berubah, namun bacaannya lebih mendekati data sumber. Signifikansi Analitis Moving averages adalah alat analisis penting yang digunakan untuk mengidentifikasi tren harga saat ini dan potensi perubahan dalam tren yang telah mapan. Bentuk paling sederhana menggunakan rata-rata bergerak sederhana dalam analisis adalah menggunakannya untuk mengidentifikasi dengan cepat apakah keamanan dalam tren naik atau tren turun. Alat analisis lain yang populer, walaupun sedikit lebih kompleks, adalah membandingkan rata-rata bergerak sederhana dengan masing-masing yang mencakup rentang waktu yang berbeda. Jika rata-rata bergerak sederhana jangka pendek berada di atas rata-rata jangka panjang, uptrend diharapkan terjadi. Di sisi lain, rata-rata jangka panjang di atas rata-rata jangka pendek menandakan pergerakan turun dalam tren. Pola Perdagangan Populer Dua pola perdagangan populer yang menggunakan moving average sederhana mencakup salib kematian dan salib emas. Salib kematian terjadi saat rata-rata pergerakan sederhana 50 hari di bawah rata-rata pergerakan 200 hari. Ini dianggap sebagai sinyal bearish, sehingga kerugian lebih lanjut di simpan. Salib emas terjadi ketika rata-rata pergerakan jangka pendek di atas rata-rata bergerak jangka panjang. Diperkuat oleh volume perdagangan yang tinggi, ini dapat memberi sinyal keuntungan lebih lanjut di toko. Perkiraan Perhitungan Contoh A.1 Metode Perhitungan Prakiraan Dua belas metode untuk menghitung perkiraan tersedia. Sebagian besar metode ini menyediakan kontrol pengguna terbatas. Misalnya, bobot yang ditempatkan pada data historis terkini atau rentang tanggal data historis yang digunakan dalam perhitungan mungkin ditentukan. Contoh berikut menunjukkan prosedur perhitungan untuk masing-masing metode peramalan yang ada, dengan data set identik. Contoh berikut menggunakan data penjualan 2004 dan 2005 yang sama untuk menghasilkan perkiraan penjualan tahun 2006. Selain perhitungan perkiraan, masing-masing contoh mencakup perkiraan simulasi tahun 2005 untuk periode tiga bulan penyimpanan (opsi pemrosesan 19 3) yang kemudian digunakan untuk persentase akurasi dan perhitungan deviasi absolut rata-rata (penjualan aktual dibandingkan dengan perkiraan simulasi). A.2 Kriteria Evaluasi Kinerja Prakiraan Tergantung pada pilihan pilihan pemrosesan Anda dan pada tren dan pola yang ada dalam data penjualan, beberapa metode peramalan akan berkinerja lebih baik daripada yang lain untuk kumpulan data historis tertentu. Metode peramalan yang sesuai untuk satu produk mungkin tidak sesuai untuk produk lain. Hal ini juga tidak mungkin bahwa metode peramalan yang memberikan hasil yang baik pada satu tahap siklus hidup produk akan tetap sesuai sepanjang keseluruhan siklus kehidupan. Anda dapat memilih antara dua metode untuk mengevaluasi kinerja metode peramalan saat ini. Ini adalah Mean Absolute Deviation (MAD) dan Persen of Accuracy (POA). Kedua metode evaluasi kinerja ini memerlukan data penjualan historis untuk jangka waktu yang ditentukan pengguna. Periode waktu ini disebut periode holdout atau periode yang paling sesuai (PBF). Data dalam periode ini digunakan sebagai dasar untuk merekomendasikan metode peramalan mana yang akan digunakan dalam membuat perkiraan proyeksi berikutnya. Rekomendasi ini khusus untuk setiap produk, dan mungkin berubah dari satu perkiraan generasi ke generasi berikutnya. Dua metode evaluasi kinerja perkiraan ditunjukkan di halaman berikut contoh dari dua belas metode peramalan. A.3 Metode 1 - Persentase Tertentu Selama Tahun Terakhir Metode ini mengalikan data penjualan dari tahun sebelumnya oleh faktor yang ditentukan pengguna misalnya, 1,10 untuk kenaikan 10, atau 0,97 untuk penurunan 3. Riwayat penjualan yang disyaratkan: Satu tahun untuk menghitung perkiraan ditambah jumlah waktu yang ditentukan pengguna untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.4.1 Prakiraan Perhitungan Rentang sejarah penjualan digunakan dalam menghitung faktor pertumbuhan (opsi pemrosesan 2a) 3 dalam contoh ini. Jumlahkan tiga bulan terakhir tahun 2005: 114 119 137 370 Jumlah tiga bulan yang sama untuk tahun sebelumnya: 123 139 133 395 Faktor yang dihitung 370395 0,9367 Hitung prakiraan: penjualan Januari 128 penjualan di 1289367 119.8036 atau sekitar 120 Februari, 2005 penjualan 117 0,9367 109,5939 atau sekitar 110 Maret, 2005 penjualan 115 0.9367 107.7205 atau sekitar 108 A.4.2 Perhitungan Prakiraan Simulasi Jumlah tiga bulan di tahun 2005 sebelum periode holdout (Juli, Agustus, September): 129 140 131 400 Jumlah tiga bulan yang sama untuk Tahun sebelumnya: 141 128 118 387 Faktor yang diperhitungkan 400387 1.033591731 Perhitungan perkiraan simulasi: penjualan Oktober 123 1.033591731 127.13178 November, 2004 penjualan 139 1.033591731 143.66925 Desember 2004 penjualan 133 1.033591731 137.4677 A.4.3 Persen Perhitungan Akurasi POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Perhitungan Deviasi Absolut Mutual MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metode 3 - Tahun lalu sampai Tahun Ini Metode ini mengumpulkan data penjualan dari tahun sebelumnya sampai tahun depan. Riwayat penjualan yang disyaratkan: Satu tahun untuk menghitung perkiraan ditambah jumlah periode waktu yang ditentukan untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.6.1 Prakiraan Perhitungan Jumlah periode yang harus dimasukkan rata-rata (opsi pemrosesan 4a) 3 pada contoh ini Untuk setiap bulan perkiraan, rata-rata data tiga bulan sebelumnya. Perkiraan Januari: 114 119 137 370 370, 370 3 123.333 atau 123 ramalan Februari: 119 137 123 379, 379 3 126,333 atau 126 perkiraan bulan Maret: 137 123 126 379, 386 3 128,667 atau 129 A.6.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2005 (129 140 131) 3 133.3333 November 2005 penjualan (140 131 114) 3 128.3333 Penjualan pada bulan Desember 2005 (131 114 119) 3 121.3333 A.6.3 Persen Perhitungan Akurasi POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mean Mutlak Perhitungan Deviasi MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metode 5 - Pendekatan Linier Linear Approximation menghitung tren berdasarkan dua titik data penjualan historis. Kedua titik tersebut menentukan garis lurus yang diproyeksikan ke masa depan. Gunakan metode ini dengan hati-hati, perkiraan jangka panjang diimbangi oleh perubahan kecil hanya dalam dua titik data. Diperlukan riwayat penjualan: Jumlah periode yang termasuk dalam regresi (opsi pemrosesan 5a), ditambah 1 ditambah jumlah periode waktu untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.8.1 Prakiraan Perhitungan Jumlah periode yang termasuk dalam regresi (opsi pemrosesan 6a) 3 pada contoh ini Untuk setiap bulan perkiraan, tambahkan kenaikan atau penurunan selama periode yang ditentukan sebelum periode holdout periode sebelumnya. Rata-rata tiga bulan sebelumnya (114 119 137) 3 123.3333 Ringkasan tiga bulan sebelumnya dengan bobot yang dipertimbangkan (114 1) (119 2) (137 3) 763 Perbedaan antara nilai 763 - 123.3333 (1 2 3) 23 Rasio ( 12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 232 11.5 Value2 Rasio average - value1 123.3333 - 11.5 2 100.3333 Prakiraan (1 n) nilai1 nilai2 4 11.5 100.3333 146.333 atau 146 Prakiraan 5 11.5 100.3333 157.8333 atau 158 Prakiraan 6 11.5 100.3333 169.3333 Atau 169 A.8.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2004: Rata-rata tiga bulan sebelumnya (129 140 131) 3 133.3333 Ringkasan tiga bulan sebelumnya dengan bobot yang dipertimbangkan (129 1) (140 2) (131 3) 802 Perbedaan antara Nilai 802 - 133.3333 (1 2 3) 2 Rasio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 22 1 Value2 Rasio average - value1 133.3333 - 1 2 131.3333 Prakiraan (1 n) value1 value2 4 1 131.3333 135.3333 November 2004 penjualan Rata-rata tiga bulan sebelumnya (140 131 114) 3 128.3333 Ringkasan tiga bulan sebelumnya dengan berat yang dipertimbangkan (140 1) (131 2) (114 3) 744 Perbedaan antara nilai 744 - 128.3333 (1 2 3) -25.9999 Value1 DifferenceRatio -25.99992 -12.9999 Value2 Average - value1 ratio 128.3333 - (-12.9999) 2 154.3333 Prakiraan 4 -12.9999 154.3333 102.3333 Penjualan Desember 2004 Rata-rata dari tiga bulan sebelumnya (131 114 119) 3 121.3333 Ringkasan tiga bulan sebelumnya dengan mempertimbangkan bobot ( 131 1) (114 2) (119 3) 716 Perbedaan antara nilai 716 - 121.3333 (1 2 3) -11.9999 Value1 DifferenceRatio -11.99992 -5.9999 Value2 Rasio average - value1 121.3333 - (-5.9999) 2 133.3333 Prakiraan 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Persen Perhitungan Akurasi POA (135.33 102.33 109.33) (114 119 137) 100 93,78 A.8,4 Perhitungan Deviasi Absolut Mutual MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Metode 7 - Secon D Degree Approximation Regresi Linier menentukan nilai a dan b dalam rumus ramalan Y a bX dengan tujuan untuk menyesuaikan garis lurus dengan data riwayat penjualan. Pendekatan Gelar Kedua serupa. Namun, metode ini menentukan nilai a, b, dan c dalam rumus ramalan Y a bX cX2 dengan tujuan untuk menyesuaikan kurva dengan data riwayat penjualan. Metode ini mungkin berguna saat produk berada dalam transisi antara tahap siklus hidup. Misalnya, ketika produk baru bergerak dari pengenalan tahap pertumbuhan, tren penjualan mungkin akan meningkat. Karena istilah orde kedua, ramalan dapat dengan cepat mendekati tak terhingga atau turun menjadi nol (tergantung pada apakah koefisien c positif atau negatif). Oleh karena itu, metode ini hanya berguna dalam jangka pendek. Perkiraan spesifikasi: Rumus menemukan a, b, dan c agar sesuai dengan kurva sampai tiga titik. Anda menentukan n dalam opsi pemrosesan 7a, jumlah periode waktu data untuk mengumpulkan ke masing-masing dari tiga titik. Dalam contoh ini n 3. Oleh karena itu, data penjualan aktual untuk bulan April sampai Juni digabungkan ke poin pertama, Q1. Juli sampai September ditambahkan bersama untuk menciptakan Q2, dan Oktober sampai Desember ke Q3. Kurva akan disesuaikan dengan tiga nilai Q1, Q2, dan Q3. Diperlukan riwayat penjualan: 3 n periode untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (PBF). Jumlah periode untuk memasukkan (opsi pemrosesan 7a) 3 dalam contoh ini Gunakan tiga bulan sebelumnya (3 n) bulan dalam blok tiga bulan: Q1 (Apr - Jun) 125 122 137 384 Q2 (Jul - Sep) 129 140 131 400 Q3 ( Okt - Dec) 114 119 137 370 Langkah selanjutnya adalah menghitung tiga koefisien a, b, dan c yang akan digunakan dalam rumus peramalan Y a bX cX2 (1) Q1 a bX cX2 (di mana X 1) abc (2) Q2 A bX cX2 (di mana X 2) a 2b 4c (3) Q3 a bX cX2 (di mana X 3) a 3b 9c Selesaikan tiga persamaan secara simultan untuk menemukan b, a, dan c: kurangi persamaan (1) dari persamaan (2) Dan memecahkan untuk b (2) - (1) Q2 - Q1 b 3c Mengganti persamaan ini untuk b ke persamaan (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Akhirnya, ganti persamaan ini untuk a dan b ke Persamaan (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Metode Pendekatan Derajat Gelar Kedua menghitung a, b, dan c sebagai berikut: Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Januari sampai perkiraan bulan Maret (X4): (322 340 - 368) 3 2943 98 Per periode April sampai ramalan bulan Juni (X5): (322 425 - 575) 3 57.333 atau 57 per periode Juli sampai perkiraan bulan September (X6): (322 510 - 828) 3 1,33 atau 1 per periode Oktober sampai Desember (X7) (322 599 - 11273 -70 A.9.2 Simulasi Prakiraan Perhitungan Penjualan Oktober, November dan Desember 2004: Q1 (Jan - Mar) 360 Q2 (Apr - Jun) 384 Q3 (Jul - Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9,3 Persen Perhitungan Akurasi POA (136 136 136) 110.17 A.9.4 Perhitungan Deviasi Absolut Mutual MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Metode 8 - Metode Fleksibel Metode Fleksibel (Persen Lebih dari 10 Bulan Sebelumnya) serupa dengan Metode 1, Persen dari Tahun Terakhir. Kedua metode tersebut melipatgandakan data penjualan dari periode waktu sebelumnya oleh faktor yang ditentukan pengguna, lalu memproyeksikan hasilnya ke masa depan. Dalam metode Percent Over Last Year, proyeksi didasarkan pada data dari periode waktu yang sama tahun sebelumnya. Metode Fleksibel menambahkan kemampuan untuk menentukan jangka waktu selain periode yang sama tahun lalu untuk digunakan sebagai dasar perhitungan. Faktor perkalian Misalnya, tentukan 1,15 pada opsi pemrosesan 8b untuk meningkatkan data riwayat penjualan sebelumnya sebesar 15. Periode dasar. Misalnya, n 3 akan menyebabkan perkiraan pertama didasarkan pada data penjualan pada bulan Oktober 2005. Riwayat penjualan minimum: Pengguna menetapkan jumlah periode kembali ke periode dasar, ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan ( PBF). A.10.4 Mean Absolute Deviation Calculation MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metode 9 - Weighted Moving Average Metode Moved Moving Average (WMA) mirip dengan Metode 4, Moving Average (MA). Namun, dengan Weighted Moving Average Anda dapat menetapkan bobot yang tidak sama dengan data historis. Metode ini menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Data yang lebih baru biasanya diberi bobot lebih besar dari data yang lebih tua, jadi ini membuat WMA lebih responsif terhadap pergeseran di tingkat penjualan. Namun, perkiraan bias dan kesalahan sistematis masih terjadi bila sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. N jumlah periode sejarah penjualan yang akan digunakan dalam perhitungan perkiraan. Sebagai contoh, tentukan n 3 pada opsi pemrosesan 9a untuk menggunakan tiga periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Nilai yang besar untuk n (seperti 12) memerlukan lebih banyak riwayat penjualan. Ini menghasilkan perkiraan yang stabil, namun akan lambat untuk mengenali pergeseran tingkat penjualan. Di sisi lain, nilai kecil untuk n (seperti 3) akan merespons perubahan tingkat penjualan yang lebih cepat, namun ramalan dapat berfluktuasi secara luas sehingga produksi tidak dapat merespons variasi. Bobot ditugaskan untuk setiap periode data historis. Bobot yang ditugaskan harus berjumlah 1,00. Misalnya, ketika n3, tetapkan bobot 0,6, 0,3, dan 0,1, dengan data terbaru yang menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13.5 A.12 Metode 10 - Linear Smoothing Metode ini serupa dengan Metode 9, Weighted Moving Average (WMA). Namun, alih-alih menugaskan bobot secara sewenang-wenang ke data historis, formula digunakan untuk menetapkan bobot yang menurun secara linier dan jumlahnya menjadi 1,00. Metode ini kemudian menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Seperti halnya semua teknik peramalan rata-rata bergerak linear, prakiraan bias dan kesalahan sistematis terjadi ketika sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. N jumlah periode sejarah penjualan yang akan digunakan dalam perhitungan perkiraan. Ini ditentukan dalam opsi pemrosesan 10a. Sebagai contoh, tentukan n 3 pada opsi pemrosesan 10b untuk menggunakan tiga periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Sistem akan secara otomatis menetapkan bobot data historis yang menurun secara linear dan jumlahnya menjadi 1,00. Misalnya, ketika n3, sistem akan menetapkan bobot 0,5, 0,3333, dan 0,1, dengan data terbaru menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (PBF). A.12.1 Prakiraan Perhitungan Jumlah periode untuk dimasukkan ke dalam rata-rata smoothing (opsi pemrosesan 10a) 3 dalam contoh ini Rasio untuk satu periode sebelum 3 (n2 n) 2 3 (32 3) 2 36 0,5 Rasio untuk dua periode sebelumnya 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Rasio untuk tiga periode sebelum 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Ramalan bulan Januari: 137 0,5 119 13 114 16 127,16 atau 127 Februari perkiraan: 127 0,5 137 13 119 16 129 perkiraan Maret: 129 0.5 127 13 137 16 129.666 atau 130 A.12.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2004 129 16 140 26 131 36 133.6666 November 2004 penjualan 140 16 131 26 114 36 124 Desember 2004 penjualan 131 16 114 26 119 36 119.3333 A.12.3 Persen Perhitungan Akurasi POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Perhitungan Deviasi Absolut Mutual MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metode 11 - Exponential Smoothing Metode ini mirip dengan Metode 10, Linear Smoothing. Dalam Linear Smoothing, sistem memberikan bobot pada data historis yang menurun secara linear. Dalam eksponensial smoothing, sistem memberikan bobot yang secara eksponensial membusuk. Persamaan peramalan eksponensial eksponensial adalah: Prakiraan (Penjualan Aktual Sebelumnya) (1 -a) Prakiraan sebelumnya Prakiraan adalah rata-rata tertimbang dari penjualan aktual dari periode sebelumnya dan perkiraan dari periode sebelumnya. A adalah bobot yang diterapkan pada penjualan aktual untuk periode sebelumnya. (1 -a) adalah bobot yang diterapkan pada ramalan untuk periode sebelumnya. Nilai yang valid untuk kisaran 0 sampai 1, dan biasanya turun antara 0,1 dan 0,4. Jumlah bobotnya adalah 1.00. A (1 -a) 1 Anda harus menetapkan nilai untuk konstanta pemulusan, a. Jika Anda tidak menetapkan nilai untuk konstanta pemulusan, sistem menghitung nilai yang diasumsikan berdasarkan jumlah periode riwayat penjualan yang ditentukan dalam opsi pemrosesan 11a. Sebuah konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai yang valid berkisar antara 0 sampai 1. n kisaran data riwayat penjualan yang disertakan dalam perhitungan. Umumnya satu tahun data penjualan data sudah cukup untuk memperkirakan tingkat penjualan secara umum. Untuk contoh ini, nilai kecil untuk n (n 3) dipilih untuk mengurangi perhitungan manual yang diperlukan untuk memverifikasi hasilnya. Perataan eksponensial dapat menghasilkan perkiraan berdasarkan sedikit data historis. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (PBF). A.13.1 Prakiraan Perhitungan Jumlah periode yang harus disertakan dalam rata-rata pemulusan (opsi pemrosesan 11a) 3, dan faktor alfa (opsi pemrosesan 11b) kosong pada contoh ini merupakan faktor untuk data penjualan tertua 2 (11), atau 1 bila alfa ditentukan Faktor untuk data penjualan tertua ke 2 (12), atau alfa saat alfa ditetapkan sebagai faktor untuk data penjualan tertua ke-3 (2), atau alfa saat alpha ditetapkan sebagai faktor untuk data penjualan terakhir 2 (1n) , Atau alpha ketika alpha ditentukan November Sm. Rata-rata A (Oktober Aktual) (1 - a) Oktober Sm. Rata-rata 1 114 0 0 114 Desember Sm. Rata-rata A (November Aktual) (1 - a) November Sm. Rata-rata 23 119 13 114 117.3333 Prakiraan bulan Januari (Desember Aktual) (1 - a) Desember Sm. Rata-rata 24 137 24 117.3333 127.16665 atau 127 Februari Prakiraan Prakiraan Januari 127 Maret Prakiraan Januari Forecast 127 A.13.2 Perhitungan Prakiraan Simulasi Juli 2004 Sm. Rata-rata 22 129 129 Agustus Sm. Rata-rata 23 140 13 129 136.3333 September Sm. Rata-rata 24 131 24 136.3333 133.6666 Oktober, 2004 penjualan Sep Sm. Rata-rata 133.6666 Agustus 2004 Sm. Rata-rata 22 140 140 September Sm. Rata-rata 23 131 13 140 134 Oktober Sm. Rata-rata 24 114 24 134 124 November, 2004 penjualan Sep Sm. Rata-rata 124 September 2004 Sm. Rata-rata 22 131 131 Oktober Sm. Rata-rata 23 114 13 131 119.6666 November Sm. Rata-rata 24 119 24 119.6666 119.3333 Desember 2004 penjualan Sep Sm. Rata-rata 119.3333 A.13.3 Persen Perhitungan Akurasi POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Perhitungan Deviasi Absolut Mutual MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metode 12 - Eksploitasi Eksponensial Dengan Trend dan Seasonality Metode ini mirip dengan Metode 11, Eksponensial Smoothing dengan rata-rata penghalusan dihitung. Namun, Metode 12 juga mencakup sebuah istilah dalam persamaan peramalan untuk menghitung tren yang merapikan. Perkiraan tersebut terdiri dari rata-rata merapikan yang disesuaikan dengan tren linier. Bila ditentukan dalam opsi pengolahan, ramalan juga disesuaikan untuk musiman. Sebuah konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai yang valid untuk rentang alfa dari 0 sampai 1. b konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk komponen tren perkiraan. Nilai yang valid untuk rentang beta dari 0 sampai 1. Apakah indeks musiman diterapkan pada perkiraan a dan b adalah independen satu sama lain. Mereka tidak perlu menambahkan ke 1.0. Riwayat penjualan minimum wajib: dua tahun ditambah jumlah periode waktu yang dibutuhkan untuk mengevaluasi kinerja perkiraan (PBF). Metode 12 menggunakan dua persamaan pemulusan eksponensial dan satu rata-rata sederhana untuk menghitung rata-rata merapikan, tren merapikan, dan faktor musiman rata-rata sederhana. A.14.1 Prakiraan Perhitungan A) Rata-rata MAD yang merata secara eksponensial (122,81 - 114 133,14 - 119 135,33 - 137) 3 8.2 A.15 Mengevaluasi Prakiraan Anda dapat memilih metode peramalan untuk menghasilkan sebanyak dua belas perkiraan untuk setiap produk. Setiap metode peramalan mungkin akan menghasilkan proyeksi yang sedikit berbeda. Bila ribuan produk diperkirakan, tidak praktis membuat keputusan subyektif mengenai prakiraan mana yang akan digunakan dalam rencana Anda untuk setiap produk. Sistem secara otomatis mengevaluasi kinerja masing-masing metode peramalan yang Anda pilih, dan untuk setiap perkiraan produk. Anda dapat memilih antara dua kriteria kinerja, Mean Absolute Deviation (MAD) dan Persen Ketelitian (POA). MAD adalah ukuran kesalahan perkiraan. POA adalah ukuran prakiraan bias. Kedua teknik evaluasi kinerja ini memerlukan data riwayat penjualan aktual untuk jangka waktu pengguna tertentu. Periode sejarah terakhir ini disebut periode holdout atau periode yang paling sesuai (PBF). Untuk mengukur kinerja metode peramalan, gunakan rumus perkiraan untuk mensimulasikan perkiraan periode penyimpanan historis. Biasanya akan ada perbedaan antara data penjualan aktual dan perkiraan simulasi untuk periode holdout. Bila beberapa metode perkiraan dipilih, proses yang sama terjadi untuk setiap metode. Beberapa prakiraan dihitung untuk periode holdout, dan dibandingkan dengan riwayat penjualan yang diketahui untuk periode waktu yang sama. Metode peramalan yang menghasilkan kecocokan terbaik (paling sesuai) antara perkiraan dan penjualan aktual selama periode holdout direkomendasikan untuk digunakan dalam rencana Anda. Rekomendasi ini khusus untuk setiap produk, dan mungkin berubah dari satu perkiraan generasi ke generasi berikutnya. A.16 Mean Absolute Deviation (MAD) MAD adalah mean (atau rata-rata) dari nilai absolut (atau besarnya) dari penyimpangan (atau kesalahan) antara data aktual dan perkiraan. MAD adalah ukuran dari besaran rata-rata kesalahan yang diharapkan, dengan metode peramalan dan riwayat data. Karena nilai absolut yang digunakan dalam perhitungan, kesalahan positif tidak membatalkan kesalahan negatif. Saat membandingkan beberapa metode peramalan, yang memiliki MAD terkecil telah terbukti paling andal untuk produk tersebut selama periode holdout tersebut. Bila perkiraan tidak bias dan kesalahan terdistribusi normal, ada hubungan matematis sederhana antara MAD dan dua ukuran distribusi umum lainnya, standar deviasi dan Mean Squared Error: A.16.1 Persen Ketelitian (POA) Persen Ketelitian (POA) adalah Ukuran prakiraan bias. Bila prakiraan konsisten terlalu tinggi, persediaan terakumulasi dan biaya persediaan meningkat. Bila perkiraan secara konsisten dua rendah, persediaan dikonsumsi dan penurunan layanan pelanggan. Sebuah perkiraan yang 10 unit terlalu rendah, maka 8 unit terlalu tinggi, maka 2 unit terlalu tinggi, akan menjadi perkiraan yang tidak bias. Kesalahan positif 10 dibatalkan oleh kesalahan negatif 8 dan 2. Kesalahan Aktual - Ramalan Bila produk dapat disimpan dalam persediaan, dan bila perkiraan tidak bias, sejumlah kecil stok pengaman dapat digunakan untuk menyangga kesalahan. Dalam situasi ini, tidak begitu penting untuk menghilangkan kesalahan perkiraan karena menghasilkan perkiraan yang tidak bias. Namun dalam industri jasa, situasi di atas akan dipandang sebagai tiga kesalahan. Layanan akan kekurangan pada periode pertama, kemudian overstaffed untuk dua periode berikutnya. Dalam layanan, besarnya kesalahan perkiraan biasanya lebih penting daripada perkiraan bias. Penjumlahan selama periode holdout memungkinkan kesalahan positif untuk membatalkan kesalahan negatif. Bila total penjualan aktual melebihi total perkiraan penjualan, rasionya lebih besar dari 100. Tentu saja, tidak mungkin lebih dari 100 akurat. Bila perkiraan tidak bias, rasio POA akan menjadi 100. Oleh karena itu, lebih diharapkan 95 akurat daripada akurat. Kriteria POA memilih metode peramalan yang memiliki rasio POA paling mendekati 100. Skrip pada halaman ini meningkatkan navigasi konten, namun tidak mengubah konten dengan cara apapun. Model rata-rata dan eksponensial pemulusan eksponensial Sebagai langkah pertama dalam bergerak melampaui model rata-rata, Model jalan acak, dan model tren linier, pola nonseasonal dan tren dapat diekstrapolasi dengan menggunakan model rata-rata bergerak atau pemulusan. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotsmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat perataan (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata-rata yang paling sederhana adalah. Rata-rata Bergerak Sederhana (rata-rata tertimbang): Prakiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t- (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model rata-rata bergerak sederhana (SMA) sama dengan model jalan acak (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk mendapatkan kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil rata-rata. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia memilih sebagian besar quot quotisequot di Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang lebih halus: Rata-rata pergerakan sederhana 5-langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai yang terakhir diamati, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian dapat menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangkan kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata pergerakan sederhana 9-term, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, usia rata-rata meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata bergerak 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 -term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam ramalan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapat bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan perkiraan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam ramalan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, bila 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada perkiraan rata-rata bergerak sederhana (SMA) karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada tingkat Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang masuk akal, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model jalan acak. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linier konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena opsi penyesuaian musiman dinonaktifkan saat jenis model diatur ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang tepat per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau paling tidak tidak terlalu buruk untuk 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan kecenderungan lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada titik waktu yang berbeda. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot dari model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke rangkaian Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat lagi, di bawah sederhana Eksponensial smoothing, ini akan menjadi ramalan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi pemulusan eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Lens menghitung perkiraan tingkat dan kecenderungan lokal dengan menghaluskan data terbaru, namun kenyataan bahwa hal itu terjadi dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat t, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Dapat diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian rata-rata umur data yang digunakan dalam memperkirakan tingkat lokal seri, usia rata-rata data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata pukul 10.006 125. Ini adalah angka yang sangat tepat karena keakuratan perkiraan 946 bukan benar-benar 3 angka desimal, namun memiliki tatanan umum yang sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir seri daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang wajar untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat menyesuaikan konstanta pemulusan tren secara manual sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi terbaik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, smoothing eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi horisontal kuotometer. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Ada kemungkinan untuk menghitung interval kepercayaan di sekitar perkiraan jangka panjang yang dihasilkan oleh model penghalusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat saat perangkat lunak daripada smoothing sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke bagian atas halaman.)
Write-automated-trading-system
Stock-options-reduce-risk