Moving-average-and-konvolution

Moving-average-and-konvolution

Rїsђr ° r # rј-dj-forex
Kursus forex-trading profesional
Kgbs-cocok-trading-system


Penilaian-dari-tidak-saham-pilihan Instruksi-fiscale-stock-options-2011 Pilihan-trading-australia-course Bagaimana-is-moving-average-price-calculation-in-getah Online-broker-otomatis-trading Rekursif-moving-average-filter-matlab

29 September 2013 Moving average by konvolution Apa itu rata-rata bergerak dan apa gunanya Bagaimana cara moving averaging dilakukan dengan menggunakan konvolusi Moving average adalah operasi sederhana yang biasanya digunakan untuk menekan noise dari sinyal: kita tetapkan nilai setiap titik ke arah Rata-rata nilai di lingkungannya. Dengan rumus: Disini x adalah input dan y adalah sinyal output, sedangkan ukuran jendela adalah w, seharusnya aneh. Rumus di atas menggambarkan operasi simetris: sampel diambil dari kedua sisi titik sebenarnya. Berikut adalah contoh kehidupan nyata. Titik di mana jendela diletakkan sebenarnya berwarna merah. Nilai di luar x seharusnya nol: Untuk bermain-main dan melihat efek rata-rata bergerak, lihatlah demonstrasi interaktif ini. Cara melakukannya dengan konvolusi Seperti yang mungkin Anda ketahui, menghitung rata-rata pergerakan sederhana sama dengan konvolusi: pada kedua kasus, sebuah jendela tergelincir sepanjang sinyal dan elemen di jendela diringkas. Jadi, cobalah untuk melakukan hal yang sama dengan menggunakan konvolusi. Gunakan parameter berikut: Output yang diinginkan adalah: Sebagai pendekatan pertama, mari kita coba apa yang kita dapatkan dengan menggabungkan sinyal x dengan kernel k berikut: Outputnya persis tiga kali lebih besar dari yang diharapkan. Bisa juga dilihat, bahwa nilai output adalah rangkuman ketiga elemen di jendela. Hal ini karena selama konvolusi jendela meluncur, semua elemen di dalamnya dikalikan dengan satu dan kemudian diringkas: yk 1 cdot x 1 cdot x 1 cdot x Untuk mendapatkan nilai y yang diinginkan. Output harus dibagi dengan 3: Dengan formula termasuk pembagiannya: Tapi bukankah optimal melakukan pembagian selama konvolusi Inilah ide dengan menata ulang persamaan: Jadi kita akan menggunakan kernel k berikut: Dengan cara ini kita akan Mendapatkan output yang diinginkan: Secara umum: jika kita ingin melakukan moving average dengan konvolusi yang memiliki ukuran jendela w. Kita akan menggunakan k kernel berikut ini: Fungsi sederhana yang melakukan moving average adalah: Contoh penggunaan adalah: Menggunakan MATLAB, bagaimana saya dapat menemukan rata-rata pergerakan hari ke-3 dari kolom matriks tertentu dan menambahkan rata-rata bergerak ke matriks tersebut. Saya mencoba menghitung rata-rata pergerakan 3 hari dari bawah ke atas matriks. Saya telah memberikan kode saya: Dengan matriks dan topeng berikut ini: Saya telah mencoba menerapkan perintah konv tapi saya menerima kesalahan. Inilah perintah konv yang saya coba gunakan pada kolom ke 2 matriks a: Output yang saya inginkan diberikan dalam matriks berikut: Jika Anda memiliki saran, saya akan sangat menghargainya. Terima kasih Untuk kolom 2 dari matriks a, saya menghitung rata-rata pergerakan 3 hari sebagai berikut dan menempatkan hasilnya di kolom 4 dari matriks a (saya mengganti nama matriks sebagai 39desiredOutput39 hanya untuk ilustrasi). Rata-rata 3 hari dari 17, 14, 11 adalah 14 rata-rata 3 hari 14, 11, 8 adalah 11 rata-rata 3 hari 11, 8, 5 adalah 8 dan rata-rata 3 hari 8, 5, 2 adalah 5. Tidak ada nilai di baris 2 bawah untuk kolom ke-4 karena penghitungan untuk rata-rata pergerakan 3 hari dimulai dari bawah. Hasil 39valid39 tidak akan ditampilkan sampai setidaknya 17, 14, dan 11. Mudah-mudahan ini masuk akal ndash Aaron 12 Jun 13 at 1:28 Secara umum akan membantu jika Anda menunjukkan kesalahannya. Dalam hal ini Anda melakukan dua hal yang salah: Pertama, konvolusi Anda perlu dibagi tiga (atau panjang rata-rata bergerak) Kedua, perhatikan ukuran c. Anda tidak bisa hanya cocok c ke a. Cara khas untuk mendapatkan rata-rata bergerak adalah dengan menggunakan yang sama: tapi itu tidak seperti yang Anda inginkan. Sebagai gantinya Anda terpaksa menggunakan beberapa baris: Moving Averages: Apakah Mereka Diantara indikator teknis yang paling populer, moving averages digunakan untuk mengukur arah tren saat ini. Setiap jenis moving average (biasanya ditulis dalam tutorial ini sebagai MA) adalah hasil matematis yang dihitung dengan rata-rata sejumlah titik data sebelumnya. Setelah ditentukan, rata-rata yang dihasilkan kemudian diplot ke bagan untuk memungkinkan pedagang melihat data yang merapikan daripada memusatkan perhatian pada fluktuasi harga sehari-hari yang melekat di semua pasar keuangan. Bentuk paling sederhana dari rata-rata bergerak, yang secara tepat dikenal sebagai moving average sederhana (SMA), dihitung dengan mengambil mean aritmetika dari serangkaian nilai yang diberikan. Misalnya, untuk menghitung rata-rata pergerakan 10 hari dasar, Anda akan menambahkan harga penutupan dari 10 hari terakhir dan kemudian membagi hasil dengan 10. Pada Gambar 1, jumlah harga selama 10 hari terakhir (110) adalah Dibagi dengan jumlah hari (10) sampai pada rata-rata 10 hari. Jika seorang pedagang ingin melihat rata-rata 50 hari, jenis perhitungan yang sama akan dilakukan, tapi itu akan mencakup harga selama 50 hari terakhir. Rata-rata yang dihasilkan di bawah (11) memperhitungkan 10 poin data terakhir untuk memberi gambaran kepada pedagang tentang bagaimana harga aset dibandingkan dengan 10 hari terakhir. Mungkin Anda bertanya-tanya mengapa pedagang teknis menyebut alat ini sebagai moving average dan bukan hanya mean biasa. Jawabannya adalah bahwa saat nilai baru tersedia, titik data tertua harus dikeluarkan dari himpunan dan titik data baru harus masuk untuk menggantikannya. Dengan demikian, kumpulan data terus bergerak untuk memperhitungkan data baru saat tersedia. Metode perhitungan ini memastikan bahwa hanya informasi terkini yang dipertanggungjawabkan. Pada Gambar 2, setelah nilai 5 yang baru ditambahkan ke himpunan, kotak merah (mewakili 10 titik data terakhir) bergerak ke kanan dan nilai terakhir 15 dijatuhkan dari perhitungan. Karena nilai yang relatif kecil dari 5 menggantikan nilai tinggi 15, Anda akan berharap untuk melihat rata-rata penurunan data, yang terjadi, dalam hal ini dari 11 sampai 10. Rata-rata Moving Averages Like Once MA telah dihitung, mereka diplot ke grafik dan kemudian terhubung untuk menciptakan garis rata-rata bergerak. Garis melengkung ini biasa ditemukan pada grafik pedagang teknis, tapi bagaimana penggunaannya dapat bervariasi secara drastis (lebih lanjut tentang ini nanti). Seperti yang dapat Anda lihat pada Gambar 3, adalah mungkin untuk menambahkan lebih dari satu moving average ke setiap grafik dengan menyesuaikan jumlah periode waktu yang digunakan dalam perhitungan. Garis melengkung ini mungkin tampak mengganggu atau membingungkan pada awalnya, tapi Anda akan terbiasa dengan mereka seiring berjalannya waktu. Garis merah hanyalah harga rata-rata selama 50 hari terakhir, sedangkan garis biru adalah harga rata-rata selama 100 hari terakhir. Sekarang setelah Anda memahami apa itu rata-rata bergerak dan seperti apa rasanya, perkenalkan jenis rata-rata bergerak yang berbeda dan periksa bagaimana perbedaannya dengan rata-rata bergerak sederhana yang disebutkan sebelumnya. Rata-rata pergerakan sederhana sangat populer di kalangan pedagang, namun seperti semua indikator teknis, memang ada kritiknya. Banyak orang berpendapat bahwa kegunaan SMA ini terbatas karena setiap titik dalam rangkaian data tertimbang sama, terlepas dari mana hal itu terjadi dalam urutan. Kritikus berpendapat bahwa data terbaru lebih signifikan daripada data yang lebih tua dan harus memiliki pengaruh lebih besar pada hasil akhir. Sebagai tanggapan atas kritik ini, para pedagang mulai memberi bobot lebih pada data terakhir, yang sejak saat ini menyebabkan penemuan berbagai tipe rata-rata baru, yang paling populer adalah Exponential Moving Average (EMA). (Untuk bacaan lebih lanjut, lihat Dasar-Dasar Rata-rata Bergerak Rata-rata dan Perbedaannya antara SMA dan EMA) Rata-rata Moving Exponential Rata-rata pergerakan eksponensial adalah jenis rata-rata bergerak yang memberi bobot lebih pada harga terakhir dalam upaya untuk membuatnya lebih responsif. Untuk informasi baru Mempelajari persamaan yang agak rumit untuk menghitung EMA mungkin tidak perlu bagi banyak pedagang, karena hampir semua paket charting melakukan perhitungan untuk Anda. Namun, bagi Anda ahli matematika matematika di luar sana, inilah persamaan EMA: Bila menggunakan rumus untuk menghitung titik pertama EMA, Anda mungkin memperhatikan bahwa tidak ada nilai yang tersedia untuk digunakan sebagai EMA sebelumnya. Masalah kecil ini bisa diatasi dengan memulai perhitungan dengan simple moving average dan melanjutkan dengan rumus di atas dari sana. Kami telah menyediakan contoh spreadsheet yang mencakup contoh kehidupan nyata tentang bagaimana menghitung rata-rata bergerak sederhana dan rata-rata pergerakan eksponensial. Perbedaan Antara EMA dan SMA Sekarang setelah Anda memiliki pemahaman yang lebih baik tentang bagaimana SMA dan EMA dihitung, mari kita lihat bagaimana rata-rata ini berbeda. Dengan melihat perhitungan EMA, Anda akan melihat bahwa penekanan lebih banyak ditempatkan pada titik data terkini, menjadikannya sebagai jenis rata-rata tertimbang. Pada Gambar 5, jumlah periode waktu yang digunakan pada masing-masing rata-rata identik (15), namun EMA merespons lebih cepat terhadap harga yang berubah. Perhatikan bagaimana EMA memiliki nilai lebih tinggi saat harga naik, dan jatuh lebih cepat dari pada SMA saat harga sedang menurun. Responsivitas inilah yang menjadi alasan utama mengapa banyak trader lebih memilih untuk menggunakan EMA di atas SMA. Apa arti Hari yang Berbeda Berarti Moving averages adalah indikator yang benar-benar dapat disesuaikan, yang berarti bahwa pengguna dapat dengan bebas memilih kerangka waktu yang mereka inginkan saat membuat rata-rata. Periode waktu paling umum yang digunakan dalam moving averages adalah 15, 20, 30, 50, 100 dan 200 hari. Semakin pendek rentang waktu yang digunakan untuk menciptakan rata-rata, semakin sensitif akan perubahan harga. Semakin lama rentang waktu, kurang sensitif, atau lebih merapikan, rata-rata akan. Tidak ada kerangka waktu yang tepat untuk digunakan saat mengatur rata-rata bergerak Anda. Cara terbaik untuk mengetahui mana yang paling sesuai untuk Anda adalah bereksperimen dengan sejumlah periode waktu yang berbeda sampai Anda menemukan strategi yang sesuai dengan strategi Anda. Moving Averages: Bagaimana Menggunakannya?
Smoothing-moving-average-matlab
Pilihan radioaktif-trading-home-study-kit-completed