Moving-average-filter-javascript

Moving-average-filter-javascript

Stock-options-table
Perusahaan berbasis biner-pilihan-perusahaan
Reddito-forex


Buka-forex-trading-account-malaysia Opsi-opsi dalam negeri-hubungan-pesanan-pesanan Online-share-trading-india-stock-broker-bse-nse Trading-post-pa-systems Intraday-trading-of-options Jual-stock-options-after-ipo

Pada dasarnya saya memiliki sejumlah nilai seperti ini: Array di atas disederhanakan, saya mengumpulkan 1 nilai per milidetik dalam kode sebenarnya dan saya perlu mengolah keluaran pada algoritma yang saya tulis untuk menemukan puncak terdekat sebelum sebuah titik waktu. Logika saya gagal karena dalam contoh saya di atas, 0,36 adalah puncak sebenarnya, tapi algoritme saya akan terlihat mundur dan melihat angka terakhir 0,25 sebagai puncaknya, karena ada penurunan menjadi 0,24 sebelum itu. Tujuannya adalah untuk mengambil nilai-nilai ini dan menerapkan algoritma kepada mereka yang akan menghaluskannya sedikit sehingga saya memiliki nilai linier yang lebih banyak. (Yaitu: Id seperti hasil saya melengkung, tidak bergerigi) Saya telah diberitahu untuk menerapkan filter rata-rata bergerak eksponensial ke nilai-nilai saya. Bagaimana saya bisa melakukan ini Sangat sulit bagi saya untuk membaca persamaan matematis, saya jauh lebih baik dengan kode. Bagaimana cara memproses nilai dalam array saya, menerapkan perhitungan rata-rata bergerak eksponensial bahkan sampai mereka bertanya pada 8 Februari pukul 20:27 untuk menghitung rata-rata pergerakan eksponensial. Anda perlu menyimpan beberapa keadaan di sekitar dan Anda memerlukan parameter tuning. Ini memerlukan kelas kecil (dengan asumsi Anda menggunakan Java 5 atau yang lebih baru): Instantiate dengan parameter peluruhan yang Anda inginkan (mungkin mengambil tuning harus antara 0 dan 1) dan kemudian gunakan rata-rata () untuk memfilter. Saat membaca sebuah halaman tentang beberapa kekambuhan mathmatical, semua yang Anda benar-benar perlu ketahui saat mengubahnya menjadi kode adalah matematikawan suka menulis indeks menjadi array dan urutan dengan subskrip. (Ada beberapa notasi lain juga, yang tidak membantu). Namun, EMA cukup sederhana karena Anda hanya perlu mengingat satu nilai lama tanpa susunan negara yang rumit. Jawab Feb 8 12 jam 20:42 TKKocheran: Cukup banyak. Tidak masalah jika hal-hal sederhana (Jika dimulai dengan urutan baru, dapatkan rata-rata baru.) Perhatikan bahwa beberapa istilah pertama dalam urutan rata-rata akan melompat sedikit karena efek batas, namun Anda mendapatkan yang memiliki rata-rata bergerak lainnya. terlalu. Namun, keuntungan yang bagus adalah Anda dapat membungkus logika rata-rata bergerak ke rata-rata dan bereksperimen tanpa mengganggu keseluruhan program Anda. Ndash Donal Fellows Feb 9 12 at 0:06 Saya mengalami kesulitan untuk memahami pertanyaan Anda, tapi saya akan mencoba menjawabnya juga. 1) Jika algoritma Anda menemukan 0,25 bukan 0,36, maka itu salah. Ini salah karena mengasumsikan kenaikan atau penurunan monotonik (yang selalu naik atau selalu turun). Kecuali Anda rata-rata SEMUA data Anda, poin data Anda --- seperti yang Anda sampaikan - tidak bersifat nonlinier. Jika Anda benar-benar ingin menemukan nilai maksimum antara dua titik dalam waktu, maka iris array Anda dari tmin ke tmax dan temukan maks dari subarray itu. 2) Sekarang, konsep moving averages sangat sederhana: bayangkan bahwa saya memiliki daftar berikut: 1.4, 1.5, 1.4, 1.5, 1.5. Saya bisa menghaluskannya dengan mengambil rata-rata dua angka: 1.45, 1.45, 1.45, 1.5. Perhatikan bahwa angka pertama adalah rata-rata 1,5 dan 1,4 (angka kedua dan pertama) yang kedua (daftar baru) adalah rata-rata 1,4 dan 1,5 (daftar ketiga dan kedua) yang ketiga (daftar baru) rata-rata 1,5 dan 1,4 (Keempat dan ketiga), dan seterusnya. Saya bisa membuatnya periode tiga atau empat, atau n. Perhatikan bagaimana datanya jauh lebih mulus. Cara yang baik untuk melihat rata-rata bergerak di tempat kerja adalah pergi ke Google Finance, pilih saham (coba Tesla Motors cukup mudah menguap (TSLA)) dan klik pada teknikal di bagian bawah bagan. Pilih Moving Average dengan periode tertentu, dan moving average eksponensial untuk membandingkan perbedaannya. Rata-rata pergerakan eksponensial hanyalah penjabaran lain dari ini, namun bobot data yang lebih tua kurang dari data baru ini adalah cara untuk meratakan perataan ke arah belakang. Silahkan baca entri Wikipedia. Jadi, ini lebih merupakan komentar daripada sebuah jawaban, tapi kotak komentar kecil itu hanya untuk mungil. Semoga berhasil. Jika Anda mengalami masalah dengan matematika, Anda bisa pergi dengan rata-rata bergerak sederhana daripada eksponensial. Jadi output yang Anda dapatkan akan menjadi x terakhir yang dibagi dengan x. Pseudocode yang tidak teruji: Perhatikan bahwa Anda perlu menangani bagian awal dan akhir data karena dengan jelas Anda tidak dapat menghitung rata-rata 5 persyaratan saat Anda berada di data 2 Anda. Juga, ada cara yang lebih efisien untuk menghitung rata-rata bergerak ini (jumlah sum - tertua terbaru), namun ini adalah untuk mendapatkan konsep tentang apa yang terjadi. Jawab 8 Februari 12 di 20: 41Apakah mungkin menerapkan rata-rata bergerak di C tanpa memerlukan jendela sampel, saya telah menemukan bahwa saya dapat mengoptimalkan sedikit, dengan memilih ukuran jendela yang merupakan kekuatan dua untuk memungkinkan perpindahan bit Alih-alih membagi, tapi tidak membutuhkan penyangga akan menyenangkan. Apakah ada cara untuk mengungkapkan hasil rata-rata bergerak baru hanya sebagai fungsi dari hasil lama dan sampel baru Tentukan contoh rata-rata bergerak, di atas jendela 4 sampel menjadi: Tambahkan sampel baru e: Rata-rata bergerak dapat diimplementasikan secara rekursif. , Tapi untuk kalkulasi rata-rata bergerak yang tepat, Anda harus mengingat sampel masukan tertua dalam jumlah (contohnya dalam contoh Anda). Untuk panjang N rata-rata bergerak yang Anda hitung: di mana yn adalah sinyal output dan xn adalah sinyal input. Pers. (1) dapat ditulis secara rekursif. Jadi Anda harus selalu mengingat sampel xn-N untuk menghitung (2). Seperti yang ditunjukkan oleh Conrad Turner, Anda dapat menggunakan jendela eksponensial (jauh lebih panjang) sebagai gantinya, yang memungkinkan Anda menghitung keluaran hanya dari keluaran lalu dan masukan saat ini: namun ini bukan rata-rata bergerak standar (tanpa bobot) namun secara eksponensial. Rata bergerak tertimbang, di mana sampel lebih jauh di masa lalu mendapatkan bobot yang lebih kecil, tapi (setidaknya secara teori) Anda tidak akan pernah melupakan apapun (bobotnya semakin kecil dan kecil untuk sampel jauh di masa lalu). Saya menerapkan rata-rata bergerak tanpa memori item individual untuk program pelacakan GPS yang saya tulis. Saya mulai dengan 1 sampel dan bagi 1 untuk mendapatkan nilai rata-rata saat ini. Saya kemudian menambahkan sampel anothe dan membagi dengan 2 ke avg saat ini. Ini berlanjut sampai saya mencapai panjang rata-rata. Setiap saat setelah itu, saya menambahkan sampel baru, mendapatkan rata-rata dan menghapus rata-rata dari total. Saya bukan seorang matematikawan tapi ini sepertinya cara yang bagus untuk melakukannya. Kupikir itu akan mengubah perut orang matematika sejati tapi, ternyata itu adalah salah satu cara yang bisa diterima untuk melakukannya. Dan itu bekerja dengan baik. Ingatlah bahwa semakin tinggi panjang Anda semakin lambat, mengikuti apa yang ingin Anda ikuti. Itu mungkin tidak masalah sebagian besar waktu tapi ketika mengikuti satelit, jika Anda lamban, jejaknya bisa jauh dari posisi sebenarnya dan akan terlihat buruk. Anda bisa memiliki celah antara duduk dan titik-titik trailing. Saya memilih panjang 15 update 6 kali per menit untuk mendapatkan smoothing yang memadai dan tidak terlalu jauh dari posisi duduk sebenarnya dengan titik jepret yang merapikan. Jawab 16 16 pada 23:03 menginisialisasi total 0, count0 (setiap kali melihat nilai baru Kemudian satu masukan (scanf), satu menambahkan totalnewValue, satu kenaikan (hitungan), satu rata-rata pembagian (jumlah total) Ini akan menjadi rata-rata bergerak di atas Semua input Untuk menghitung rata-rata hanya di atas 4 masukan terakhir, akan memerlukan 4 variabel input, mungkin menyalin setiap masukan ke inputvariable yang lebih tua, kemudian menghitung rata-rata pergerakan baru. Sebagai jumlah dari 4 variabel input, dibagi 4 (pergeseran kanan 2 akan menjadi Baik jika semua input positif membuat perhitungan rata-rata dijawab 3 Feb 15 at 4:06 Itu benar-benar akan menghitung rata-rata total dan TIDAK rata-rata bergerak. Seiring bertambahnya dampak, setiap sampel masukan baru menjadi sangat kecil ndash Hilmar Feb 3 15 at 13:53 Jawaban Anda 2017 Stack Exchange, IncI perlu merancang filter rata-rata bergerak yang memiliki frekuensi cut-off 7,8 Hz. Saya telah menggunakan filter rata-rata bergerak sebelumnya, namun sejauh yang saya ketahui, satu-satunya parameter yang Bisa diumpankan adalah th E jumlah titik yang akan dirata-ratakan. Bagaimana ini berhubungan dengan frekuensi cut-off Kebalikan dari 7,8 Hz adalah 130 ms, dan Im bekerja dengan data yang diambil sampelnya pada 1000 Hz. Apakah ini menyiratkan bahwa saya seharusnya menggunakan ukuran jendela filter rata-rata bergerak dari 130 sampel, atau ada yang lain yang saya lewatkan di sini bertanya 18 Juli 13 di 9:52 Filter rata-rata bergerak adalah filter yang digunakan dalam domain waktu untuk menghapus Kebisingan yang ditambahkan dan juga untuk tujuan pemulusan namun jika Anda menggunakan filter rata-rata bergerak yang sama di domain frekuensi untuk pemisahan frekuensi maka kinerjanya akan menjadi yang terburuk. Jadi dalam hal ini menggunakan filter domain frekuensi ndash user19373 3 Feb 16 at 5:53 Filter rata-rata bergerak (kadang-kadang dikenal bahasa sehari-hari sebagai filter boxcar) memiliki respon impuls persegi panjang: Atau, dengan kata lain berbeda: Mengingat respons frekuensi sistem diskrit-waktu Sama dengan transformasi Fourier diskrit waktu respon impulsnya, kita dapat menghitungnya sebagai berikut: Yang paling diminati untuk kasus Anda adalah respons besarnya filter, H (omega). Dengan menggunakan beberapa manipulasi sederhana, kita bisa mendapatkannya dalam bentuk yang mudah dimengerti: Ini mungkin tidak akan mudah dimengerti. Namun, karena identitas Eulers. Ingatlah bahwa: Oleh karena itu, kita dapat menulis di atas sebagai: Seperti yang saya nyatakan sebelumnya, apa yang benar-benar Anda khawatirkan adalah besarnya respons frekuensi. Jadi, kita dapat mengambil besarnya hal di atas untuk menyederhanakannya lebih jauh: Catatan: Kita dapat menjatuhkan istilah eksponensial karena mereka tidak mempengaruhi besarnya hasil e1 untuk semua nilai omega. Karena xy xy untuk dua bilangan kompleks hingga x dan y, kita dapat menyimpulkan bahwa kehadiran istilah eksponensial tidak mempengaruhi respons besaran keseluruhan (sebaliknya, ini mempengaruhi respon fase sistem). Fungsi yang dihasilkan di dalam kurung besarnya adalah bentuk kernel Dirichlet. Terkadang disebut fungsi sinc periodik, karena menyerupai fungsi sinc agak dalam penampilan, namun bersifat periodik. Bagaimanapun, karena definisi frekuensi cutoff agak underspecified (-3 dB point -6 dB point first sidelobe null), Anda dapat menggunakan persamaan di atas untuk menyelesaikan apa pun yang Anda butuhkan. Secara khusus, Anda dapat melakukan hal berikut: Set H (omega) ke nilai yang sesuai dengan respons filter yang Anda inginkan pada frekuensi cutoff. Atur omega sama dengan frekuensi cutoff. Untuk memetakan frekuensi waktu kontinyu ke domain diskrit-waktu, ingatlah bahwa omega 2pi frac, di mana fs adalah sample rate Anda. Temukan nilai N yang memberi Anda kesepakatan terbaik antara sisi kiri dan kanan dari persamaan. Itu seharusnya panjang rata-rata bergerak Anda. Jika N adalah panjang rata-rata bergerak, maka frekuensi cut-off perkiraan F (berlaku untuk N gt 2) pada frekuensi normal Fffs adalah: Kebalikan dari ini adalah Rumus ini sama sekali asimtotik untuk N besar, dan memiliki sekitar 2 kesalahan. Untuk N2, dan kurang dari 0,5 untuk N4. P.S. Setelah dua tahun, akhirnya inilah pendekatan yang diikuti. Hasilnya didasarkan pada perkiraan spektrum amplitudo MA di sekitar f0 sebagai parabola (Seri ke 2) menurut omega-2 Omega2 MA (Omega) sekitar 1 (frac -frac) yang dapat dibuat lebih tepat di dekat persimpangan nol MA (Omega) - Frac dengan mengalikan Omega dengan koefisien yang mendapatkan MA (Omega) kira-kira 10.907523 (frac -frac) Omega2 Larutan MA (Omega) -frac 0 memberikan hasil di atas, di mana 2pi F Omega. Semua hal di atas berkaitan dengan frekuensi cut -3dB, subjek dari posting ini. Terkadang meskipun menarik untuk mendapatkan profil atenuasi pada stop-band yang sebanding dengan urutan ke 1 IIR Low Pass Filter (single pole LPF) dengan frekuensi pemotongan -3dB yang diberikan (seperti LPF disebut juga integrator bocor, Memiliki tiang tidak persis di DC tapi dekat dengan itu). Sebenarnya kedua MA dan orde 1 LPF IIR memiliki kemiringan -20dBdecade di band berhenti (satu membutuhkan N yang lebih besar daripada yang digunakan pada gambar, N32, untuk melihat ini), namun sedangkan MA memiliki nulls spektral pada FkN dan sebuah Pada evelope, filter IIR hanya memiliki profil 1f. Jika seseorang ingin mendapatkan filter MA dengan kemampuan penyaringan yang serupa seperti filter IIR ini, dan cocok dengan frekuensi cut cut 3dB agar tetap sama, setelah membandingkan dua spektrum, ia akan menyadari bahwa riak pita stop dari filter MA berakhir 3dB di bawah filter IIR. Untuk mendapatkan riasan stop-band yang sama (yaitu redaman daya noise yang sama) sebagai filter IIR, rumus dapat dimodifikasi sebagai berikut: Saya menemukan kembali skrip Mathematica dimana saya menghitung cut off untuk beberapa filter, termasuk satu MA. Hasilnya didasarkan pada perkiraan spektrum MA sekitar f0 sebagai parabola menurut MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) kira-kira N16F2 (N-N3) pi2. Dan menurunkan persimpangan dengan 1sqrt dari sana. Ndash Massimo 17 Jan at 2:08
Pilihan-strategi-untuk-volatile-stocks
Stock-options-vs-restricted-stock