Moving-average-filter-matlab-function

Moving-average-filter-matlab-function

Trading-strategy-for-scaling-in
Wall-street-forex-london-ltd-southall
Pilihan-trading-untuk-pemula-buku


Trade-show-booth-options Trading-system-review-forum Motilal-oswal-online-trading-customer-care Pilihan-trading-business-plan Options-trading-vs-penny-stocks W-2-reporting-of-incentive-stock-options

Dibuat pada hari Rabu, 08 Oktober 2008 20:04 Terakhir Diperbaharui pada Kamis, 14 Maret 2013 01:29 Ditulis oleh Batuhan Osmanoglu Hits: 41424 Moving Average Di Matlab Seringkali saya mendapati diri saya membutuhkan data rata-rata saya harus mengurangi sedikit kebisingan. sedikit. Saya menulis beberapa fungsi untuk melakukan apa yang saya inginkan, tapi matlabs yang dibangun dengan fungsi filter bekerja dengan cukup baik. Disini saya menulis tentang data rata-rata 1D dan 2D. Filter 1D dapat direalisasikan dengan menggunakan fungsi filter. Fungsi filter memerlukan setidaknya tiga parameter masukan: koefisien numerator untuk filter (b), koefisien penyebut untuk filter (a), dan data (X) tentu saja. Filter rata-rata yang sedang berjalan dapat didefinisikan hanya dengan: Untuk data 2D kita bisa menggunakan fungsi Matlabs filter2. Untuk informasi lebih lanjut tentang bagaimana filter bekerja, Anda dapat mengetikkan: Berikut adalah penerapan filter rata-rata bergerak 16 by 16 yang cepat dan kotor. Pertama kita perlu mendefinisikan filternya. Karena semua yang kita inginkan adalah kontribusi yang setara dari semua tetangga kita bisa menggunakan fungsinya. Kita membagi semuanya dengan 256 (1616) karena kita tidak ingin mengubah tingkat umum (amplitudo) sinyal. Untuk menerapkan filter, kita bisa mengatakan berikut ini Berikut adalah hasil fase interferogram SAR. Dalam hal ini Range berada pada sumbu Y dan Azimuth dipetakan pada sumbu X. Filternya lebar 4 piksel dengan lebar Rentang dan lebar 16 piksel pada Azimuth.Frequency Response of the Running Average Filter Respon frekuensi sistem LTI adalah DTFT dari respon impuls, Respons impuls dari rata-rata pergerakan L-sample adalah karena Filter rata-rata bergerak adalah FIR, respons frekuensi berkurang sampai jumlah terbatas. Kita dapat menggunakan identitas yang sangat berguna untuk menuliskan respons frekuensi seperti di mana kita membiarkan ae minus jomega. N 0, dan M L minus 1. Kita mungkin tertarik pada besarnya fungsi ini untuk menentukan frekuensi yang melewati filter yang tidak diimbangi dan yang dilemahkan. Berikut adalah sebidang besar fungsi ini untuk L 4 (merah), 8 (hijau), dan 16 (biru). Sumbu horizontal berkisar dari nol sampai pi radian per sampel. Perhatikan bahwa dalam ketiga kasus tersebut, respons frekuensi memiliki karakteristik lowpass. Komponen konstan (nol frekuensi) pada masukan melewati filter yang tidak diimbangi. Beberapa frekuensi yang lebih tinggi, seperti pi 2, benar-benar dihilangkan oleh filter. Namun, jika maksudnya adalah mendesain filter lowpass, maka kita belum melakukannya dengan baik. Beberapa frekuensi yang lebih tinggi dilemahkan hanya dengan faktor sekitar 110 (untuk rata-rata pergerakan 16 titik) atau 13 (untuk rata-rata pergerakan empat titik). Kita bisa melakukan jauh lebih baik dari itu. Plot di atas dibuat dengan kode Matlab berikut: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)). (1-exp (-iomega)) plot (abs omega, abs (H4) abs (H8) H16)) sumbu (0, pi, 0, 1) Copy hak cipta 2000- - University of California, BerkeleyDownload movAv.m (lihat juga movAv2 - versi terbaru yang memungkinkan pembobotan) Deskripsi Matlab mencakup fungsi yang disebut movavg dan tsmovavg (perpindahan waktu Rata) di Financial Toolbox, movAv dirancang untuk mereplikasi fungsi dasar ini. Kode di sini memberikan contoh bagus untuk mengelola indeks di dalam loop, yang bisa membingungkan untuk memulai. Saya sengaja menyimpan kode pendek dan sederhana agar proses ini tetap jelas. MovAv melakukan moving average sederhana yang dapat digunakan untuk memulihkan data yang bising dalam beberapa situasi. Ia bekerja dengan mengambil rata-rata input (y) di atas jendela waktu geser, ukurannya ditentukan oleh n. Semakin besar n, semakin besar jumlah perataan efek n relatif terhadap panjang vektor masukan y. Dan efektif (baik, semacam) menciptakan filter frekuensi lowpass - lihat contoh dan bagian pertimbangan. Karena jumlah smoothing yang diberikan oleh masing-masing nilai n relatif terhadap panjang vektor input, nilainya selalu bernilai untuk menguji nilai yang berbeda untuk melihat apa yang sesuai. Ingat juga bahwa n poin hilang pada masing-masing rata-rata jika n adalah 100, 99 poin pertama dari vektor input tidak berisi data yang cukup untuk rata-rata 100pt. Hal ini dapat dihindari agak oleh rata-rata susun, misalnya, kode dan grafik di bawah membandingkan sejumlah rata-rata jendela panjang yang berbeda. Perhatikan bagaimana kelancaran 1010pt dibandingkan dengan rata-rata 20pt tunggal. Dalam kedua kasus tersebut 20 titik data hilang secara total. Buat xaxis x1: 0,01: 5 Menghasilkan noise noiseReps 4 noise repmat (randn (1, ceil (numel (x) noiseReps)), noiseReps, 1) noise reshape (noise, 1, length (noise) noiseReps) Menghasilkan ydata noise yexp X) 10noise (1: length (x)) Perfrom averages: y2 movAv (y, 10) 10 pt y3 movAv (y2, 10) 1010 pt y4 movAv (y, 20) 20 pt y5 movAv (y, 40) 40 pt Y6 movAv (y, 100) 100 pt Plot figure plot (x, y, y2, y3, y4, y5, y6) legenda (data mentah, 10pt moving average, 1010pt, 20pt, 40pt, 100pt) xlabel (x) ylabel Y) judul (Perbandingan moving averages) movAv.m kode fungsi run-through output movAv (y, n) Baris pertama mendefinisikan nama fungsi, input dan output. Masukan x harus berupa vektor data untuk melakukan rata-rata, n harus jumlah titik untuk melakukan rata-rata di atas output akan berisi data rata-rata yang dikembalikan oleh fungsinya. Preallocate output outputNaN (1, numel (y)) Temukan titik tengah n ruas tengah (n2) Pekerjaan utama fungsi dilakukan dalam loop, tapi sebelum memulai dua hal disiapkan. Pertama, keluarannya adalah pra-alokasi sebagai NaN, ini melayani dua tujuan. Pertama, preallokasi pada umumnya adalah praktik yang baik karena mengurangi juggling memori yang harus dilakukan Matlab, kedua, sangat memudahkan untuk menempatkan data rata-rata ke dalam output dengan ukuran yang sama dengan vektor input. Ini berarti xaxis yang sama dapat digunakan kemudian untuk keduanya, yang sesuai untuk merencanakan, sebagai alternatif NaN dapat dilepas nanti dalam satu baris kode (output output (Variabel midPoint akan digunakan untuk menyelaraskan data pada vektor output. N 10, 10 poin akan hilang karena, untuk 9 titik pertama vektor masukan, tidak ada cukup data untuk mengambil nilai rata-rata 10 poin. Karena outputnya akan lebih pendek dari pada input, maka perlu diselaraskan dengan benar. Digunakan sehingga jumlah data yang sama hilang pada awal dan akhir, dan input dijaga sejajar dengan output oleh buffer NaN yang dibuat saat preallocating output. Untuk 1: length (y) -n Temukan kisaran indeks untuk mengambil rata-rata Over (a: b) ban Menghitung mean output (amidPoint) mean (y (a: b)) end Dalam for loop itu sendiri, mean diambil alih setiap segmen berturut-turut dari input. Loop akan berjalan untuk a. Didefinisikan sebagai 1 sampai dengan panjang input (y), minus data yang akan hilang (n). Jika input 100 point lo Ng dan n adalah 10, loop akan berjalan dari (a) 1 sampai 90. Ini berarti indeks pertama dari segmen akan dirata-ratakan. Indeks kedua (b) hanya satu-1. Jadi pada iterasi pertama, a1. N10. Jadi b 11-1 10. Rata-rata pertama diambil alih y (a: b). Atau x (1:10). Rata-rata segmen ini, yang merupakan satu nilai tunggal, disimpan dalam output di indeks amidPoint. Atau 156. Pada iterasi kedua, a2. B 210-1 11. Jadi mean diambil alih x (2:11) dan disimpan dalam output (7). Pada iterasi terakhir dari loop untuk input dengan panjang 100, a91. B 9010-1 100 sehingga mean diambil alih x (91: 100) dan disimpan dalam output (95). Ini menghasilkan output dengan total n (10) nilai NaN pada indeks (1: 5) dan (96: 100). Contoh dan pertimbangan Moving averages berguna dalam beberapa situasi, tapi tidak selalu pilihan terbaik. Berikut adalah dua contoh dimana mereka belum tentu optimal. Kalibrasi Mikrofon Kumpulan data ini mewakili tingkat masing-masing frekuensi yang dihasilkan oleh speaker dan dicatat oleh mikrofon dengan respons linier yang diketahui. Output speaker bervariasi dengan frekuensi, namun kami dapat memperbaiki variasi ini dengan data kalibrasi - output dapat disesuaikan secara level untuk menjelaskan fluktuasi dalam kalibrasi. Perhatikan bahwa data mentahnya berisik - ini berarti bahwa perubahan kecil pada frekuensi tampaknya memerlukan perubahan level yang besar dan tidak menentu. Apakah ini realistis Atau apakah ini merupakan produk dari lingkungan rekaman Yang masuk akal dalam hal ini untuk menerapkan rata-rata bergerak yang menghaluskan kurva tingkat frekuensi untuk memberikan kurva kalibrasi yang sedikit kurang tidak menentu. Tapi mengapa tidak optimal dalam contoh ini Data lebih banyak akan lebih baik - beberapa kalibrasi berjalan rata-rata akan menghancurkan kebisingan di sistem (selama acak) dan memberikan kurva dengan detail yang kurang halus hilang. Rata-rata bergerak hanya dapat memperkirakan hal ini, dan dapat menghilangkan beberapa penurunan frekuensi dan puncak yang lebih tinggi dari kurva yang benar-benar ada. Gelombang sinus Menggunakan rata-rata bergerak pada gelombang sinus menyoroti dua poin: Masalah umum memilih sejumlah titik yang masuk akal untuk melakukan rata-rata di atas. Yang sederhana, tapi ada metode analisis sinyal yang lebih efektif daripada rata-rata sinyal osilasi dalam domain waktu. Dalam grafik ini, gelombang sinus asli diplot dengan warna biru. Kebisingan ditambahkan dan diplot sebagai kurva oranye. Rata-rata bergerak dilakukan pada berbagai titik untuk melihat apakah gelombang asli dapat dipulihkan. 5 dan 10 poin memberikan hasil yang masuk akal, namun jangan menghilangkan noise seluruhnya, karena jumlah titik yang lebih banyak mulai kehilangan detail amplitudo karena rata-rata meluas melebihi fase yang berbeda (ingat oscilat gelombang sekitar nol, dan rata-rata (-1 1) 0) .Sebuah pendekatan alternatif adalah dengan membangun filter lowpass daripada yang bisa diterapkan pada sinyal di domain frekuensi. Im tidak akan membahas detail karena melampaui lingkup artikel ini, namun karena suaranya jauh lebih tinggi daripada frekuensi dasar gelombang, akan cukup mudah jika membuat filter lowpass daripada yang akan mengeluarkan frekuensi tinggi. kebisingan.
Stock-split-affect-on-options
Online-trading-game-malaysia