Moving-average-stata-time-series

Moving-average-stata-time-series

Penyu-perdagangan-sistem-pdf
Testing-trading-systems-on-historical-data
Option-trading-tips-and-tricks


Makna-of-online-trading-of-sekuritas Mingguan-opsi-trading-dimulai-on-nse-in Stock-options-under-companies-act-2013 Moving-average-afl-code Live-forex-broker-spreads-comparison Swing-trading-strategies-investopedia

Moving averages Moving averages Dengan dataset konvensional, nilai rata-rata seringkali merupakan yang pertama, dan salah satu statistik ringkasan yang paling berguna untuk dihitung. Bila data dalam bentuk deret waktu, mean seri adalah ukuran yang berguna, namun tidak mencerminkan sifat dinamis data. Nilai rata-rata yang dihitung selama periode korsleting, baik sebelum periode sekarang atau berpusat pada periode berjalan, seringkali lebih bermanfaat. Karena nilai rata-rata seperti itu akan bervariasi, atau bergerak, karena periode saat ini bergerak dari waktu t 2, t 3. dll, mereka dikenal sebagai moving averages (Mas). Rata-rata pergerakan sederhana adalah (biasanya) nilai rata-rata k yang tidak tertimbang sebelumnya. Rata-rata pergerakan tertimbang secara eksponensial pada dasarnya sama dengan rata-rata pergerakan sederhana, namun dengan kontribusi rata-rata tertimbang oleh kedekatannya dengan waktu saat ini. Karena tidak ada satu, tapi keseluruhan rangkaian rata-rata bergerak untuk rangkaian tertentu, himpunan Mas dapat digambarkan sendiri pada grafik, dianalisis sebagai seri, dan digunakan dalam pemodelan dan peramalan. Berbagai model dapat dibangun menggunakan moving averages, dan ini dikenal dengan model MA. Jika model seperti itu digabungkan dengan model autoregresif (AR) maka model komposit yang dihasilkan dikenal sebagai model ARMA atau ARIMA (yang saya terintegrasi). Rata-rata bergerak sederhana Karena deret waktu dapat dianggap sebagai himpunan nilai,, t 1,2,3,4, n rata-rata nilai-nilai ini dapat dihitung. Jika kita berasumsi bahwa n cukup besar, dan kita memilih bilangan bulat k yang jauh lebih kecil dari n. Kita dapat menghitung satu set rata-rata blok, atau rata-rata bergerak sederhana (urutan k): Setiap ukuran mewakili rata-rata nilai data selama interval observasi k. Perhatikan bahwa MA yang pertama mungkin order k gt0 adalah bahwa untuk t k. Secara umum, kita dapat menurunkan subskrip ekstra dalam ungkapan di atas dan menulis: Ini menyatakan bahwa perkiraan mean pada waktu t adalah rata-rata sederhana dari nilai yang teramati pada waktu t dan langkah waktu k -1 sebelumnya. Jika bobot diterapkan yang mengurangi kontribusi pengamatan yang jauh melampaui waktu, rata-rata bergerak dikatakan merapikan secara eksponensial. Moving averages sering digunakan sebagai bentuk peramalan, dimana nilai estimasi untuk seri pada waktu t 1, S t1. Diambil sebagai MA untuk periode sampai dan termasuk waktu t. misalnya Taksiran hari ini didasarkan pada rata-rata nilai tercatat sebelumnya sampai dengan dan termasuk kemarin (untuk data harian). Simple moving averages dapat dilihat sebagai bentuk smoothing. Pada contoh diilustrasikan di bawah ini, dataset pencemar udara yang ditunjukkan dalam pendahuluan topik ini telah ditambah dengan garis rata-rata bergerak 7-hari (MA), yang ditunjukkan di sini berwarna merah. Seperti dapat dilihat, garis MA menghaluskan puncak dan palung data dan bisa sangat membantu dalam mengidentifikasi tren. Rumus perhitungan maju standar berarti bahwa titik data k pertama tidak memiliki nilai MA, namun setelah itu perhitungan berlanjut ke titik data akhir dalam rangkaian. Nilai rata-rata harian PM10, sumber Greenwich: London Air Quality Network, londonair.org.uk Salah satu alasan untuk menghitung rata-rata bergerak sederhana dengan cara yang dijelaskan adalah memungkinkan nilai dihitung untuk semua slot waktu dari waktu hingga saat ini, dan Sebagai pengukuran baru diperoleh untuk waktu t 1, MA untuk waktu t 1 dapat ditambahkan ke himpunan yang sudah dihitung. Ini menyediakan prosedur sederhana untuk dataset dinamis. Namun, ada beberapa masalah dengan pendekatan ini. Adalah wajar untuk mengatakan bahwa nilai rata-rata selama 3 periode terakhir, katakanlah, harus ditempatkan pada waktu t -1, bukan waktu t. Dan untuk MA selama periode genap mungkin sebaiknya ditempatkan di titik tengah antara dua interval waktu. Solusi untuk masalah ini adalah dengan menggunakan perhitungan MA terpusat, di mana MA pada waktu t adalah rata-rata seperangkat nilai simetris di sekitar t. Terlepas dari manfaatnya yang jelas, pendekatan ini umumnya tidak digunakan karena memerlukan data tersedia untuk kejadian di masa depan, yang mungkin tidak demikian. Dalam kasus di mana analisis seluruhnya merupakan rangkaian yang ada, penggunaan Mas terpusat mungkin lebih baik. Rata-rata bergerak sederhana dapat dianggap sebagai bentuk perataan, mengeluarkan beberapa komponen frekuensi tinggi dari deret waktu dan menyoroti (namun tidak menghilangkan) tren dengan cara yang serupa dengan pengertian umum penyaringan digital. Memang, moving averages adalah bentuk linear filter. Hal ini dimungkinkan untuk menerapkan perhitungan rata-rata bergerak ke rangkaian yang telah diperhalus, yaitu merapikan atau menyaring rangkaian yang sudah diperhalus. Sebagai contoh, dengan rata-rata pergerakan order 2, kita dapat menganggapnya sebagai dihitung dengan menggunakan bobot, jadi MA pada x 2 0,5 x 1 0,5 x 2. Demikian juga MA pada x 3 0,5 x 2 0,5 x 3. Jika kita Oleskan tingkat kedua dari smoothing atau penyaringan, kita memiliki 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 yaitu penyaringan 2 tahap Proses (atau konvolusi) telah menghasilkan mean moving average simetris yang bervariasi, dengan bobot. Beberapa konvolusi dapat menghasilkan rata-rata pergerakan tertimbang yang cukup kompleks, beberapa di antaranya telah ditemukan penggunaan khusus di bidang khusus, seperti dalam perhitungan asuransi jiwa. Moving averages dapat digunakan untuk menghilangkan efek periodik jika dihitung dengan panjang periodisitas seperti yang diketahui. Misalnya, dengan variasi musiman data bulanan seringkali dapat dihapus (jika ini adalah tujuannya) dengan menerapkan rata-rata pergerakan 12 jam simetris dengan semua bulan berbobot rata, kecuali yang pertama dan terakhir yang dibobot pada 12. Hal ini karena akan ada Menjadi 13 bulan dalam model simetris (waktu sekarang, t - 6 bulan). Total dibagi dengan 12. Prosedur serupa dapat diadopsi untuk periodisitas yang didefinisikan dengan baik. Rata-rata pergerakan tertimbang secara eksponensial (EWMA) Dengan rumus rata-rata bergerak sederhana: semua pengamatan sama-sama tertimbang. Jika kita menyebut bobot yang sama ini, alpha t. Masing-masing bobot k akan sama dengan 1 k. Jadi jumlah bobotnya adalah 1, dan rumusnya adalah: Kita telah melihat bahwa beberapa aplikasi dari proses ini menghasilkan bobot yang bervariasi. Dengan rata-rata pergerakan tertimbang secara eksponensial, kontribusi terhadap nilai rata-rata dari pengamatan yang lebih banyak dihapus pada waktunya akan dikurangi, sehingga menekankan kejadian terkini (lokal). Pada dasarnya parameter penghalusan, 0lt alpha lt1, diperkenalkan, dan rumusan direvisi menjadi: Versi simetris dari rumus ini adalah bentuknya: Jika bobot pada model simetris dipilih sebagai persyaratan istilah ekspansi binomial, (1212) 2q. Mereka akan berjumlah 1, dan sebagai q menjadi besar, akan mendekati distribusi Normal. Ini adalah bentuk pembobotan kernel, dengan Binomial berperan sebagai fungsi kernel. Konvolusi dua tahap yang dijelaskan dalam subbab sebelumnya adalah pengaturan ini, dengan q 1, menghasilkan bobot. Dalam eksponensial smoothing perlu menggunakan seperangkat bobot yang berjumlah 1 dan yang ukurannya kurang dari geometris. Bobot yang digunakan biasanya berbentuk: Untuk menunjukkan bahwa bobot ini berjumlah 1, pertimbangkan perluasan 1 sebagai rangkaian. Kita dapat menulis dan memperluas ekspresi dalam tanda kurung dengan menggunakan rumus binomial (1- x) hal. Dimana x (1-) dan p -1, yang memberikan: Ini kemudian memberikan bentuk rata-rata bergerak tertimbang dalam bentuk: Penjumlahan ini dapat ditulis sebagai relasi rekurensi: yang menyederhanakan perhitungan dengan sangat, dan menghindari masalah bahwa rezim pembobotan Harus benar-benar tak terbatas untuk bobot untuk jumlah untuk 1 (untuk nilai-nilai kecil alfa.ini biasanya tidak terjadi). Notasi yang digunakan oleh penulis berbeda bervariasi. Beberapa menggunakan huruf S untuk menunjukkan bahwa rumus dasarnya adalah variabel yang dihaluskan, dan tulis: sedangkan literatur teori kontrol sering menggunakan Z daripada S untuk nilai tertimbang secara eksponensial atau merapikan (lihat, misalnya, Lucas dan Saccucci, 1990, LUC1 , Dan situs NIST untuk lebih jelasnya dan contoh kerja). Rumus yang dikutip di atas berasal dari karya Roberts (1959, ROB1), namun Hunter (1986, HUN1) menggunakan ekspresi dari bentuk: yang mungkin lebih sesuai untuk digunakan dalam beberapa prosedur pengendalian. Dengan alpha 1, perkiraan rata-rata hanyalah nilai terukurnya (atau nilai item data sebelumnya). Dengan 0,5 perkiraan adalah rata-rata bergerak sederhana dari pengukuran arus dan sebelumnya. Dalam peramalan model nilai, S t. Sering digunakan sebagai perkiraan atau perkiraan nilai untuk periode waktu berikutnya, yaitu sebagai perkiraan x pada waktu t 1. Jadi, kita memiliki: Ini menunjukkan bahwa nilai perkiraan pada waktu t 1 adalah kombinasi dari rata-rata pergerakan tertimbang eksponensial sebelumnya Ditambah komponen yang mewakili kesalahan prediksi tertimbang, epsilon. Pada waktu t. Dengan asumsi deret waktu diberikan dan perkiraan diperlukan, nilai untuk alpha diperlukan. Hal ini dapat diperkirakan dari data yang ada dengan mengevaluasi jumlah kesalahan prediksi kuadrat yang diperoleh dengan nilai alpha yang bervariasi untuk masing-masing t 2,3. Menetapkan perkiraan pertama menjadi nilai data pertama yang diamati, x 1. Pada aplikasi kontrol, nilai alpha penting untuk digunakan dalam penentuan batas kontrol atas dan bawah, dan mempengaruhi rata-rata panjang run (ARL) yang diharapkan. Sebelum batas kontrol ini rusak (dengan asumsi bahwa deret waktu mewakili satu set variabel independen acak yang terdistribusi secara acak dengan varians umum). Dalam keadaan ini varians dari statistik kontrol: adalah (Lucas dan Saccucci, 1990): Batas kontrol biasanya ditetapkan sebagai kelipatan tetap dari varians asimtotik ini, mis. - 3 kali standar deviasi. Jika alpha 0,25, misalnya, dan data yang dipantau diasumsikan memiliki distribusi Normal, N (0,1), bila terkendali, batas kontrol akan menjadi - 1.134 dan prosesnya akan mencapai satu atau batas lainnya dalam 500 langkah. rata-rata. Lucas dan Saccucci (1990 LUC1) menurunkan ARL untuk berbagai nilai alfa dan dengan berbagai asumsi menggunakan prosedur Markov Chain. Mereka menabulasikan hasilnya, termasuk menyediakan ARL ketika mean dari proses kontrol telah digeser oleh beberapa kelipatan dari standar deviasi. Misalnya, dengan pergeseran 0,5 dengan alpha 0,25 ARL kurang dari 50 langkah waktu. Pendekatan yang dijelaskan di atas dikenal sebagai smoothing eksponensial tunggal. Karena prosedur diterapkan sekali pada deret waktu dan kemudian dianalisis atau dikendalikan dilakukan pada dataset yang dihaluskan. Jika dataset mencakup tren dan atau komponen musiman, perataan eksponensial dua atau tiga tahap dapat diterapkan sebagai alat untuk menghapus (memodelkan secara eksplisit) efek ini (lihat lebih lanjut, bagian Peramalan di bawah, dan contoh kerja NIST). CHA1 Chatfield C (1975) Analisis Seri Times: Teori dan Praktik. Chapman and Hall, London HUN1 Hunter J S (1986) Rata-rata pergerakan tertimbang eksponensial. J dari Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Skema Kontrol Rata-rata Bergerak Rata-rata Tertimbang: Properti dan Perangkat Tambahan. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Uji Chart Kontrol Berdasarkan Rata-rata Bergerak Geometrik. Technometrics, 1, 239-250Pendahuluan untuk ARIMA: model nonseasonal Persamaan peramalan ARIMA (p, d, q): Model ARIMA secara teori adalah kelas model paling umum untuk meramalkan rangkaian waktu yang dapat dibuat menjadi 8220stationary8221 dengan membedakan (Jika perlu), mungkin bersamaan dengan transformasi nonlinier seperti penebangan atau pengosongan (jika perlu). Variabel acak yang merupakan deret waktu adalah stasioner jika sifat statistiknya konstan sepanjang waktu. Seri stasioner tidak memiliki tren, variasinya berkisar rata-rata memiliki amplitudo konstan, dan bergoyang secara konsisten. Yaitu pola waktu acak jangka pendeknya selalu terlihat sama dalam arti statistik. Kondisi terakhir ini berarti autokorelasinya (korelasi dengan penyimpangannya sendiri dari mean) tetap konstan dari waktu ke waktu, atau ekuivalen, bahwa spektrum kekuatannya tetap konstan seiring berjalannya waktu. Variabel acak dari bentuk ini dapat dilihat (seperti biasa) sebagai kombinasi sinyal dan noise, dan sinyal (jika ada) dapat menjadi pola reversi rata-rata yang cepat atau lambat, atau osilasi sinusoidal, atau alternasi cepat pada tanda , Dan itu juga bisa memiliki komponen musiman. Model ARIMA dapat dilihat sebagai filter 8220filter8221 yang mencoba memisahkan sinyal dari noise, dan sinyal tersebut kemudian diekstrapolasikan ke masa depan untuk mendapatkan perkiraan. Persamaan peramalan ARIMA untuk rangkaian waktu stasioner adalah persamaan linier (yaitu regresi-tipe) dimana prediktor terdiri dari kelambatan variabel dependen dan atau lag dari kesalahan perkiraan. Yaitu: Prediksi nilai Y adalah konstanta dan atau jumlah tertimbang dari satu atau lebih nilai Y dan satu angka tertimbang dari satu atau lebih nilai kesalahan terkini. Jika prediktor hanya terdiri dari nilai Y yang tertinggal, itu adalah model autoregresif murni (8220 self-regressed8221), yang hanyalah kasus khusus dari model regresi dan yang dapat dilengkapi dengan perangkat lunak regresi standar. Sebagai contoh, model autoregresif orde pertama (8220AR (1) 8221) untuk Y adalah model regresi sederhana dimana variabel independennya hanya Y yang tertinggal satu periode (LAG (Y, 1) dalam Statgrafik atau YLAG1 dalam RegresIt). Jika beberapa prediktor tertinggal dari kesalahan, model ARIMA TIDAK merupakan model regresi linier, karena tidak ada cara untuk menentukan error8221 8220last period8417s sebagai variabel independen: kesalahan harus dihitung berdasarkan periode-ke-periode Saat model dipasang pada data. Dari sudut pandang teknis, masalah dengan menggunakan kesalahan tertinggal sebagai prediktor adalah bahwa prediksi model8217 bukanlah fungsi linear dari koefisien. Meskipun mereka adalah fungsi linier dari data masa lalu. Jadi, koefisien pada model ARIMA yang mencakup kesalahan tertinggal harus diestimasi dengan metode optimasi nonlinier (8220 climb-climbing8221) daripada hanya dengan memecahkan sistem persamaan. Akronim ARIMA adalah singkatan Auto-Regressive Integrated Moving Average. Lags dari rangkaian stasioner dalam persamaan peramalan disebut istilah quotautoregressivequot, kelambatan kesalahan perkiraan disebut istilah kuotasi rata-rata quotmoving, dan deret waktu yang perlu dibedakan untuk dijadikan stasioner disebut versi seri integimental dari seri stasioner. Model random-walk dan random-trend, model autoregresif, dan model smoothing eksponensial adalah kasus khusus model ARIMA. Model ARIMA nonseasonal diklasifikasikan sebagai model quotARIMA (p, d, q) quot, di mana: p adalah jumlah istilah autoregresif, d adalah jumlah perbedaan nonseason yang diperlukan untuk stasioneritas, dan q adalah jumlah kesalahan perkiraan yang tertinggal dalam Persamaan prediksi Persamaan peramalan dibangun sebagai berikut. Pertama, izinkan y menunjukkan perbedaan D dari Y. yang berarti: Perhatikan bahwa perbedaan kedua Y (kasus d2) bukanlah selisih 2 periode yang lalu. Sebaliknya, ini adalah perbedaan pertama perbedaan dari perbedaan pertama. Yang merupakan analog diskrit dari derivatif kedua, yaitu percepatan lokal dari seri daripada tren lokalnya. Dalam hal y. Persamaan peramalan umum adalah: Di sini parameter rata-rata bergerak (9528217s) didefinisikan sehingga tanda-tanda mereka negatif dalam persamaan, mengikuti konvensi yang diperkenalkan oleh Box dan Jenkins. Beberapa penulis dan perangkat lunak (termasuk bahasa pemrograman R) mendefinisikannya sehingga mereka memiliki tanda plus. Bila nomor aktual dicolokkan ke dalam persamaan, tidak ada ambiguitas, tapi penting untuk mengetahui konvensi mana yang digunakan perangkat lunak Anda saat Anda membaca hasilnya. Seringkali parameter dilambangkan dengan AR (1), AR (2), 8230, dan MA (1), MA (2), 8230 dll. Untuk mengidentifikasi model ARIMA yang sesuai untuk Y. Anda memulai dengan menentukan urutan differencing (D) perlu membuat stasioner seri dan menghilangkan fitur musiman musiman, mungkin bersamaan dengan transformasi yang menstabilkan varians seperti penebangan atau pengapuran. Jika Anda berhenti pada titik ini dan meramalkan bahwa rangkaian yang dibedakan konstan, Anda hanya memiliki model berjalan acak atau acak acak. Namun, rangkaian stationarized masih memiliki kesalahan autokorelasi, menunjukkan bahwa beberapa jumlah istilah AR (p 8805 1) dan beberapa persyaratan MA (q 8805 1) juga diperlukan dalam persamaan peramalan. Proses penentuan nilai p, d, dan q yang terbaik untuk seri waktu tertentu akan dibahas di bagian catatan selanjutnya (yang tautannya ada di bagian atas halaman ini), namun pratinjau beberapa jenis Model ARIMA nonseasonal yang biasa ditemui diberikan di bawah ini. ARIMA (1,0,0) model autoregresif orde pertama: jika seri stasioner dan autokorelasi, mungkin dapat diprediksi sebagai kelipatan dari nilai sebelumnya, ditambah konstanta. Persamaan peramalan dalam kasus ini adalah 8230 yang Y regresi pada dirinya sendiri tertinggal oleh satu periode. Ini adalah model konstanta 8220ARIMA (1,0,0) constant8221. Jika mean Y adalah nol, maka istilah konstan tidak akan disertakan. Jika koefisien kemiringan 981 1 positif dan kurang dari 1 besarnya (harus kurang dari 1 jika Y adalah stasioner), model tersebut menggambarkan perilaku rata-rata pada nilai periode berikutnya yang diperkirakan akan menjadi 981 1 kali sebagai Jauh dari mean sebagai nilai periode ini. Jika 981 1 negatif, ia memprediksi perilaku rata-rata dengan bergantian tanda, yaitu juga memprediksi bahwa Y akan berada di bawah rata-rata periode berikutnya jika berada di atas rata-rata periode ini. Dalam model autoregresif orde kedua (ARIMA (2,0,0)), akan ada istilah Y t-2 di sebelah kanan juga, dan seterusnya. Bergantung pada tanda dan besaran koefisien, model ARIMA (2,0,0) bisa menggambarkan sistem yang pembalikan rata-rata terjadi dengan mode sinusoidal oscillating, seperti gerak massa pada pegas yang mengalami guncangan acak. . ARIMA (0,1,0) berjalan acak: Jika seri Y tidak stasioner, model yang paling sederhana untuk model ini adalah model jalan acak, yang dapat dianggap sebagai kasus pembatas model AR (1) dimana autoregresif Koefisien sama dengan 1, yaitu deret dengan reversi mean yang jauh lebih lambat. Persamaan prediksi untuk model ini dapat ditulis sebagai: di mana istilah konstan adalah perubahan periode-ke-periode rata-rata (yaitu drift jangka panjang) di Y. Model ini dapat dipasang sebagai model regresi yang tidak mencegat dimana Perbedaan pertama Y adalah variabel dependen. Karena hanya mencakup perbedaan nonseasonal dan istilah konstan, model ini diklasifikasikan sebagai model quotARIMA (0,1,0) dengan konstan. Model acak-berjalan-tanpa-undian akan menjadi ARIMA (0,1, 0) model tanpa ARIMA konstan (1,1,0) membedakan model autoregresif orde pertama: Jika kesalahan model jalan acak autokorelasi, mungkin masalahnya dapat diperbaiki dengan menambahkan satu lag variabel dependen ke persamaan prediksi- -yaitu Dengan mengundurkan diri dari perbedaan pertama Y pada dirinya sendiri yang tertinggal satu periode. Ini akan menghasilkan persamaan prediksi berikut: yang dapat diatur ulang ke Ini adalah model autoregresif orde pertama dengan satu urutan perbedaan nonseasonal dan istilah konstan - yaitu. Sebuah model ARIMA (1,1,0). ARIMA (0,1,1) tanpa perataan eksponensial sederhana: Strategi lain untuk memperbaiki kesalahan autokorelasi dalam model jalan acak disarankan oleh model pemulusan eksponensial sederhana. Ingatlah bahwa untuk beberapa rangkaian waktu nonstasioner (misalnya yang menunjukkan fluktuasi yang bising di sekitar rata-rata yang bervariasi secara perlahan), model jalan acak tidak berjalan sebaik rata-rata pergerakan nilai masa lalu. Dengan kata lain, daripada mengambil pengamatan terbaru sebagai perkiraan pengamatan berikutnya, lebih baik menggunakan rata-rata beberapa pengamatan terakhir untuk menyaring kebisingan dan memperkirakan secara lebih akurat mean lokal. Model pemulusan eksponensial sederhana menggunakan rata-rata pergerakan rata-rata tertimbang eksponensial untuk mencapai efek ini. Persamaan prediksi untuk model pemulusan eksponensial sederhana dapat ditulis dalam sejumlah bentuk ekuivalen matematis. Salah satunya adalah bentuk koreksi yang disebut 8220error correction8221, dimana ramalan sebelumnya disesuaikan dengan kesalahan yang dibuatnya: Karena e t-1 Y t-1 - 374 t-1 menurut definisinya, ini dapat ditulis ulang sebagai : Yang merupakan persamaan peramalan ARIMA (0,1,1) - tanpa perkiraan konstan dengan 952 1 1 - 945. Ini berarti bahwa Anda dapat menyesuaikan smoothing eksponensial sederhana dengan menentukannya sebagai model ARIMA (0,1,1) tanpa Konstan, dan perkiraan koefisien MA (1) sesuai dengan 1-minus-alpha dalam formula SES. Ingatlah bahwa dalam model SES, usia rata-rata data dalam prakiraan 1 periode adalah 1 945. yang berarti bahwa mereka cenderung tertinggal dari tren atau titik balik sekitar 1 945 periode. Dengan demikian, rata-rata usia data dalam prakiraan 1-periode-depan model ARIMA (0,1,1) - tanpa model konstan adalah 1 (1 - 952 1). Jadi, misalnya, jika 952 1 0,8, usia rata-rata adalah 5. Karena 952 1 mendekati 1, model ARIMA (0,1,1) -tanpa-konstan menjadi rata-rata bergerak jangka-panjang, dan sebagai 952 1 Pendekatan 0 menjadi model random-walk-without-drift. Apa cara terbaik untuk memperbaiki autokorelasi: menambahkan istilah AR atau menambahkan istilah MA Dalam dua model sebelumnya yang dibahas di atas, masalah kesalahan autokorelasi dalam model jalan acak diperbaiki dengan dua cara yang berbeda: dengan menambahkan nilai lag dari seri yang berbeda Ke persamaan atau menambahkan nilai tertinggal dari kesalahan perkiraan. Pendekatan mana yang terbaik Aturan praktis untuk situasi ini, yang akan dibahas lebih rinci nanti, adalah bahwa autokorelasi positif biasanya paling baik ditangani dengan menambahkan istilah AR pada model dan autokorelasi negatif biasanya paling baik ditangani dengan menambahkan MA istilah. Dalam deret waktu bisnis dan ekonomi, autokorelasi negatif sering muncul sebagai artefak perbedaan. (Secara umum, differencing mengurangi autokorelasi positif dan bahkan dapat menyebabkan perubahan dari autokorelasi positif ke negatif.) Jadi, model ARIMA (0,1,1), di mana perbedaannya disertai dengan istilah MA, lebih sering digunakan daripada Model ARIMA (1,1,0). ARIMA (0,1,1) dengan perataan eksponensial sederhana konstan dengan pertumbuhan: Dengan menerapkan model SES sebagai model ARIMA, Anda benar-benar mendapatkan fleksibilitas. Pertama-tama, perkiraan koefisien MA (1) dibiarkan negatif. Ini sesuai dengan faktor pemulusan yang lebih besar dari 1 dalam model SES, yang biasanya tidak diizinkan oleh prosedur pemasangan model SES. Kedua, Anda memiliki pilihan untuk menyertakan istilah konstan dalam model ARIMA jika Anda mau, untuk memperkirakan tren nol-rata-rata. Model ARIMA (0,1,1) dengan konstanta memiliki persamaan prediksi: Prakiraan satu periode dari model ini secara kualitatif serupa dengan model SES, kecuali bahwa lintasan perkiraan jangka panjang biasanya adalah Garis miring (kemiringannya sama dengan mu) dan bukan garis horizontal. ARIMA (0,2,1) atau (0,2,2) tanpa pemulusan eksponensial linier konstan: Model pemulusan eksponensial linier adalah model ARIMA yang menggunakan dua perbedaan nonseasonal dalam hubungannya dengan persyaratan MA. Perbedaan kedua dari seri Y bukan hanya perbedaan antara Y dan dirinya tertinggal dua periode, namun ini adalah perbedaan pertama dari perbedaan pertama - i. Perubahan perubahan Y pada periode t. Jadi, perbedaan kedua Y pada periode t sama dengan (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Perbedaan kedua dari fungsi diskrit sama dengan turunan kedua dari fungsi kontinu: ia mengukur kuotasi kuadrat atau quotcurvaturequot dalam fungsi pada suatu titik waktu tertentu. Model ARIMA (0,2,2) tanpa konstan memprediksi bahwa perbedaan kedua dari rangkaian sama dengan fungsi linier dari dua kesalahan perkiraan terakhir: yang dapat disusun ulang sebagai: di mana 952 1 dan 952 2 adalah MA (1) dan MA (2) koefisien. Ini adalah model pemulusan eksponensial linear umum. Dasarnya sama dengan model Holt8217s, dan model Brown8217s adalah kasus khusus. Ini menggunakan rata-rata pergerakan tertimbang eksponensial untuk memperkirakan tingkat lokal dan tren lokal dalam rangkaian. Perkiraan jangka panjang dari model ini menyatu dengan garis lurus yang kemiringannya bergantung pada tren rata-rata yang diamati menjelang akhir rangkaian. ARIMA (1,1,2) tanpa perataan eksponensial eksponensial yang terfragmentasi. Model ini diilustrasikan dalam slide yang menyertainya pada model ARIMA. Ini mengekstrapolasikan tren lokal di akhir seri namun meratakannya pada cakrawala perkiraan yang lebih panjang untuk memperkenalkan catatan konservatisme, sebuah praktik yang memiliki dukungan empiris. Lihat artikel di quotWhy the Damped Trend karyaquot oleh Gardner dan McKenzie dan artikel quotGolden Rulequot oleh Armstrong dkk. Untuk rinciannya Umumnya dianjurkan untuk berpegang pada model di mana setidaknya satu dari p dan q tidak lebih besar dari 1, yaitu jangan mencoba menyesuaikan model seperti ARIMA (2,1,2), karena hal ini cenderung menyebabkan overfitting. Dan isu-isu kuotom-faktorquot yang dibahas secara lebih rinci dalam catatan tentang struktur matematis model ARIMA. Implementasi Spreadsheet: Model ARIMA seperti yang dijelaskan di atas mudah diterapkan pada spreadsheet. Persamaan prediksi hanyalah persamaan linier yang mengacu pada nilai-nilai masa lalu dari rangkaian waktu asli dan nilai kesalahan masa lalu. Dengan demikian, Anda dapat membuat spreadsheet peramalan ARIMA dengan menyimpan data di kolom A, rumus peramalan pada kolom B, dan kesalahan (data minus prakiraan) di kolom C. Rumus peramalan pada sel biasa di kolom B hanya akan menjadi Sebuah ekspresi linier yang mengacu pada nilai-nilai pada baris-kolom sebelumnya kolom A dan C, dikalikan dengan koefisien AR atau MA yang sesuai yang tersimpan dalam sel di tempat lain pada spreadsheet. Data: Analisis Data dan Perangkat Lunak Statistik Nicholas J. Cox, Universitas Durham, Inggris Christopher Baum, Boston College egen, ma () dan keterbatasannya Statarsquos perintah yang paling jelas untuk menghitung moving averages adalah fungsi ma () dari egen. Dengan ekspresi, itu menciptakan rata-rata pergerakkan rata-rata ekspresi itu. Secara default, diambil sebagai 3. pasti aneh. Namun, seperti yang ditunjukkan oleh manual entry, egen, ma () mungkin tidak digabungkan dengan varlist:. Dan, untuk alasan itu saja, itu tidak berlaku untuk data panel. Bagaimanapun, itu berdiri di luar serangkaian perintah yang secara khusus ditulis untuk seri waktu melihat deret waktu untuk rinciannya. Pendekatan alternatif Untuk menghitung rata-rata bergerak untuk data panel, setidaknya ada dua pilihan. Keduanya bergantung pada dataset yang sebelumnya sudah tsset. Ini sangat layak dilakukan: Anda tidak hanya bisa menyelamatkan diri Anda berulang kali menentukan variabel panel dan variabel waktu, namun Stata berperilaku dengan cerdas mengingat adanya kesenjangan dalam data. 1. Tulis definisi Anda sendiri dengan menggunakan Menggunakan operator time-series seperti L. dan F.. Berikan definisi rata-rata bergerak sebagai argumen untuk menghasilkan pernyataan. Jika Anda melakukan ini, Anda tentu saja tidak terbatas pada rata-rata bergerak rata tertimbang (tidak tertimbang) yang dihitung oleh egen, ma (). Misalnya, rata-rata bergerak tiga periode rata-rata tertimbang akan diberikan oleh dan beberapa bobot dapat dengan mudah ditentukan: Anda tentu saja dapat menentukan sebuah ekspresi seperti log (myvar) dan bukan nama variabel seperti myvar. Salah satu keuntungan besar dari pendekatan ini adalah bahwa Stata secara otomatis melakukan hal yang benar untuk data panel: nilai-nilai terdepan dan tertinggal ada di dalam panel, seperti logika yang menentukannya. Kelemahan yang paling menonjol adalah bahwa command line bisa agak lama jika moving average melibatkan beberapa istilah. Contoh lainnya adalah moving average satu sisi yang hanya berdasarkan nilai sebelumnya. Ini bisa berguna untuk menghasilkan harapan adaptif tentang variabel apa yang akan didasarkan semata-mata berdasarkan informasi sampai saat ini: perkiraan seseorang terhadap periode saat ini berdasarkan empat nilai terakhir, dengan menggunakan skema bobot tetap (jeda 4 periode mungkin Terutama yang biasa digunakan dengan kuartalan kuartalan.) 2. Gunakan egen, filter () dari SSC Gunakan filter fungsi egen yang ditulis pengguna () dari paket egenmore pada SSC. Di Stata 7 (diperbarui setelah 14 November 2001), Anda dapat menginstal paket ini setelah beberapa menit kemudian membantu rincian tentang filter (). Dua contoh di atas akan diberikan (Dalam perbandingan ini, pendekatan menghasilkan mungkin lebih transparan, tapi kita akan melihat contoh yang berlawanan dalam sekejap.) Kelemahannya adalah numlist. Mengarah ke kelambatan yang negatif: dalam kasus ini -11 berkembang menjadi -1 0 1 atau memimpin 1, lag 0, lag 1. Fibre coef, numlist lainnya, perbanyak item lagging atau leading yang sesuai: dalam hal ini item tersebut adalah F1.myvar . Myvar dan L1.myvar. Efek dari pilihan normalisasi adalah untuk mengukur koefisien masing-masing dengan jumlah koefisien sehingga koefisien (1 1 1) normalisasi sama dengan koefisien 13 13 13 dan coef (1 2 1) normalisasi sama dengan koefisien 14 12 14 Anda harus menentukan tidak hanya kelambatan tapi juga koefisiennya. Karena egen, ma () menyediakan kasus yang sama berbobot, alasan utama untuk egen, filter () adalah untuk mendukung kasus bobot yang tidak sama, yang mana Anda harus menentukan koefisiennya. Bisa juga dikatakan bahwa mewajibkan pengguna untuk menentukan koefisien adalah sedikit tekanan tambahan pada mereka untuk memikirkan koefisien apa yang mereka inginkan. Pembenaran utama untuk bobot yang sama adalah, kami kira, kesederhanaan, namun bobot yang sama memiliki sifat domain frekuensi yang buruk, untuk menyebutkan hanya satu pertimbangan. Contoh ketiga di atas bisa jadi salah satunya mendekati serumit pendekatan menghasilkan. Ada kasus di mana egen, filter () memberikan formulasi yang lebih sederhana daripada menghasilkan. Jika Anda ingin filter binomial sembilan-istilah, yang menurut para ahli iklim berguna, maka mungkin terlihat kurang mengerikan daripada, dan lebih mudah untuk mendapatkan yang benar daripada, Sama seperti dengan pendekatan menghasilkan, egen, filter () bekerja dengan baik dengan data panel. Sebenarnya, seperti yang dinyatakan di atas, ini tergantung pada dataset yang sebelumnya telah di-download. Tip grafis Setelah menghitung rata-rata bergerak Anda, Anda mungkin ingin melihat grafik. Perintah yang ditulis pengguna tsgraph cerdas tentang dataset tsset. Pasang di Stata 7 yang up-to-date oleh ssc inst tsgraph. Bagaimana dengan bersekongkol dengan jika Tidak satu pun dari contoh di atas menggunakan jika pembatasan. Sebenarnya egen, ma () tidak akan mengizinkan jika ditentukan. Terkadang orang ingin menggunakan jika saat menghitung moving averages, namun penggunaannya sedikit lebih rumit dari biasanya. Apa yang akan Anda harapkan dari rata-rata bergerak yang dihitung dengan if. Mari kita kenali dua kemungkinan: Penafsiran yang lemah: Saya tidak ingin melihat hasil apapun untuk pengamatan yang dikecualikan. Interpretasi yang kuat: Saya bahkan tidak ingin Anda menggunakan nilai-nilai untuk pengamatan yang dikecualikan. Inilah contoh konkretnya. Misalkan sebagai konsekuensi dari beberapa jika kondisi, pengamatan 1-42 dimasukkan tetapi tidak diobservasi. Tapi rata-rata bergerak untuk 42 akan bergantung, antara lain, pada nilai untuk observasi 43 jika rata-rata melebar ke belakang dan ke depan dan panjangnya minimal 3, dan juga akan bergantung pada beberapa pengamatan dan seterusnya dalam beberapa situasi. Dugaan kami adalah kebanyakan orang akan mengikuti interpretasi yang lemah, tapi apakah itu benar, egen, filter () tidak mendukung jika keduanya. Anda selalu bisa mengabaikan apa yang tidak Anda inginkan atau bahkan menetapkan nilai yang tidak diinginkan yang hilang setelahnya dengan menggunakan ganti. Catatan tentang hasil yang hilang pada ujung seri Karena rata-rata bergerak adalah fungsi lag dan lead, egen, ma () menghasilkan missing dimana lag dan lead tidak ada, pada awal dan akhir rangkaian. Pilihan nomiss memaksa perhitungan rata-rata bergerak pendek yang tidak dipalsukan untuk ekornya. Sebaliknya, tidak menghasilkan atau egen, filter () tidak, atau memungkinkan, sesuatu yang istimewa untuk menghindari hasil yang hilang. Jika salah satu nilai yang dibutuhkan untuk perhitungan hilang, maka hasilnya hilang. Terserah kepada pengguna untuk memutuskan apakah operasi pembedahan diperlukan untuk observasi semacam itu, mungkin setelah melihat kumpulan data dan mempertimbangkan ilmu pengetahuan yang mendasarinya yang dapat dibawa untuk ditanggung.
Tiga-hitam-gagak-candlestick-formasi
Stochastic-bollinger-band-ea