Moving-average-trend-estimation

Moving-average-trend-estimation

Ninjatrader-forex-demo-account
Apakah-biner-options-trading-profitable
Social-forex-awards-2011


Vc-forex Online-trading-systems-in-india Option-trading-strategies-in-hindi-language Swing-trading-stochastics-system-for-big-gains Warren-buffetts-dividend-stock-strategy Trading-system-operator

Pengantar ARIMA: model nonseasonal Persamaan peramalan ARIMA (p, d, q): Model ARIMA secara teori adalah kelas model paling umum untuk meramalkan deret waktu yang dapat dibuat dengan cara membedakan (jika perlu), mungkin Dalam hubungannya dengan transformasi nonlinier seperti logging atau deflating (jika perlu). Variabel acak yang merupakan deret waktu adalah stasioner jika sifat statistiknya konstan sepanjang waktu. Seri stasioner tidak memiliki tren, variasinya berkisar rata-rata memiliki amplitudo konstan, dan bergoyang secara konsisten. Yaitu pola waktu acak jangka pendeknya selalu terlihat sama dalam arti statistik. Kondisi terakhir ini berarti autokorelasinya (korelasi dengan penyimpangannya sendiri dari mean) tetap konstan dari waktu ke waktu, atau ekuivalen, bahwa spektrum kekuatannya tetap konstan seiring berjalannya waktu. Variabel acak dari bentuk ini dapat dilihat (seperti biasa) sebagai kombinasi sinyal dan noise, dan sinyal (jika ada) dapat menjadi pola reversi rata-rata yang cepat atau lambat, atau osilasi sinusoidal, atau alternasi cepat pada tanda , Dan itu juga bisa memiliki komponen musiman. Model ARIMA dapat dilihat sebagai filter 8220filter8221 yang mencoba memisahkan sinyal dari noise, dan sinyal tersebut kemudian diekstrapolasikan ke masa depan untuk mendapatkan perkiraan. Persamaan peramalan ARIMA untuk rangkaian waktu stasioner adalah persamaan linier (yaitu regresi-tipe) dimana prediktor terdiri dari kelambatan variabel dependen dan atau lag dari kesalahan perkiraan. Yaitu: Prediksi nilai Y adalah konstanta dan atau jumlah tertimbang dari satu atau lebih nilai Y dan satu angka tertimbang dari satu atau lebih nilai kesalahan terkini. Jika prediktor hanya terdiri dari nilai Y yang tertinggal, itu adalah model autoregresif murni (8220 self-regressed8221), yang hanyalah kasus khusus dari model regresi dan yang dapat dilengkapi dengan perangkat lunak regresi standar. Sebagai contoh, model autoregresif orde pertama (8220AR (1) 8221) untuk Y adalah model regresi sederhana dimana variabel independennya hanya Y yang tertinggal satu periode (LAG (Y, 1) dalam Statgrafik atau YLAG1 dalam RegresIt). Jika beberapa prediktor tertinggal dari kesalahan, model ARIMA TIDAK merupakan model regresi linier, karena tidak ada cara untuk menentukan error8221 8220last period8417s sebagai variabel independen: kesalahan harus dihitung berdasarkan periode-ke-periode Saat model dipasang pada data. Dari sudut pandang teknis, masalah dengan menggunakan kesalahan tertinggal sebagai prediktor adalah bahwa prediksi model8217 bukanlah fungsi linear dari koefisien. Meskipun mereka adalah fungsi linier dari data masa lalu. Jadi, koefisien pada model ARIMA yang mencakup kesalahan tertinggal harus diestimasi dengan metode optimasi nonlinier (8220 climb-climbing8221) daripada hanya dengan memecahkan sistem persamaan. Akronim ARIMA adalah singkatan Auto-Regressive Integrated Moving Average. Lags dari rangkaian stasioner dalam persamaan peramalan disebut istilah quotautoregressivequot, kelambatan kesalahan perkiraan disebut istilah kuotasi rata-rata quotmoving, dan deret waktu yang perlu dibedakan untuk dijadikan stasioner disebut versi seri integimental dari seri stasioner. Model random-walk dan random-trend, model autoregresif, dan model smoothing eksponensial adalah kasus khusus model ARIMA. Model ARIMA nonseasonal diklasifikasikan sebagai model quotARIMA (p, d, q) quot, di mana: p adalah jumlah istilah autoregresif, d adalah jumlah perbedaan nonseason yang diperlukan untuk stasioneritas, dan q adalah jumlah kesalahan perkiraan yang tertinggal dalam Persamaan prediksi Persamaan peramalan dibangun sebagai berikut. Pertama, izinkan y menunjukkan perbedaan D dari Y. yang berarti: Perhatikan bahwa perbedaan kedua Y (kasus d2) bukanlah selisih 2 periode yang lalu. Sebaliknya, ini adalah perbedaan pertama perbedaan dari perbedaan pertama. Yang merupakan analog diskrit dari derivatif kedua, yaitu percepatan lokal dari seri daripada tren lokalnya. Dalam hal y. Persamaan peramalan umum adalah: Di sini parameter rata-rata bergerak (9528217s) didefinisikan sehingga tanda-tanda mereka negatif dalam persamaan, mengikuti konvensi yang diperkenalkan oleh Box dan Jenkins. Beberapa penulis dan perangkat lunak (termasuk bahasa pemrograman R) mendefinisikannya sehingga mereka memiliki tanda plus. Bila nomor aktual dicolokkan ke dalam persamaan, tidak ada ambiguitas, tapi penting untuk mengetahui konvensi mana yang digunakan perangkat lunak Anda saat Anda membaca hasilnya. Seringkali parameter dilambangkan dengan AR (1), AR (2), 8230, dan MA (1), MA (2), 8230 dll. Untuk mengidentifikasi model ARIMA yang sesuai untuk Y. Anda memulai dengan menentukan urutan differencing (D) perlu membuat stasioner seri dan menghilangkan fitur musiman musiman, mungkin bersamaan dengan transformasi yang menstabilkan varians seperti penebangan atau pengapuran. Jika Anda berhenti pada titik ini dan meramalkan bahwa rangkaian yang dibedakan konstan, Anda hanya memiliki model berjalan acak atau acak acak. Namun, rangkaian stationarized masih memiliki kesalahan autokorelasi, menunjukkan bahwa beberapa jumlah istilah AR (p 8805 1) dan beberapa persyaratan MA (q 8805 1) juga diperlukan dalam persamaan peramalan. Proses penentuan nilai p, d, dan q yang terbaik untuk seri waktu tertentu akan dibahas di bagian catatan selanjutnya (yang tautannya ada di bagian atas halaman ini), namun pratinjau beberapa jenis Model ARIMA nonseasonal yang biasa ditemui diberikan di bawah ini. ARIMA (1,0,0) model autoregresif orde pertama: jika seri stasioner dan autokorelasi, mungkin dapat diprediksi sebagai kelipatan dari nilai sebelumnya, ditambah konstanta. Persamaan peramalan dalam kasus ini adalah 8230 yang Y regresi pada dirinya sendiri tertinggal oleh satu periode. Ini adalah model konstanta 8220ARIMA (1,0,0) constant8221. Jika mean Y adalah nol, maka istilah konstan tidak akan disertakan. Jika koefisien kemiringan 981 1 positif dan kurang dari 1 besarnya (harus kurang dari 1 jika Y adalah stasioner), model tersebut menggambarkan perilaku rata-rata pada nilai periode berikutnya yang diperkirakan akan menjadi 981 1 kali sebagai Jauh dari mean sebagai nilai periode ini. Jika 981 1 negatif, ia memprediksi perilaku rata-rata dengan bergantian tanda, yaitu juga memprediksi bahwa Y akan berada di bawah rata-rata periode berikutnya jika berada di atas rata-rata periode ini. Dalam model autoregresif orde kedua (ARIMA (2,0,0)), akan ada istilah Y t-2 di sebelah kanan juga, dan seterusnya. Bergantung pada tanda dan besaran koefisien, model ARIMA (2,0,0) bisa menggambarkan sistem yang pembalikan rata-rata terjadi dengan mode sinusoidal oscillating, seperti gerak massa pada pegas yang mengalami guncangan acak. . ARIMA (0,1,0) berjalan acak: Jika seri Y tidak stasioner, model yang paling sederhana untuk model ini adalah model jalan acak, yang dapat dianggap sebagai kasus pembatas model AR (1) dimana autoregresif Koefisien sama dengan 1, yaitu deret dengan reversi mean yang jauh lebih lambat. Persamaan prediksi untuk model ini dapat ditulis sebagai: di mana istilah konstan adalah perubahan periode-ke-periode rata-rata (yaitu drift jangka panjang) di Y. Model ini dapat dipasang sebagai model regresi yang tidak mencegat dimana Perbedaan pertama Y adalah variabel dependen. Karena hanya mencakup perbedaan nonseasonal dan istilah konstan, model ini diklasifikasikan sebagai model quotARIMA (0,1,0) dengan konstan. Model acak-berjalan-tanpa-undian akan menjadi ARIMA (0,1, 0) model tanpa ARIMA konstan (1,1,0) membedakan model autoregresif orde pertama: Jika kesalahan model jalan acak autokorelasi, mungkin masalahnya dapat diperbaiki dengan menambahkan satu lag variabel dependen ke persamaan prediksi- -yaitu Dengan mengundurkan diri dari perbedaan pertama Y pada dirinya sendiri yang tertinggal satu periode. Ini akan menghasilkan persamaan prediksi berikut: yang dapat diatur ulang ke Ini adalah model autoregresif orde pertama dengan satu urutan perbedaan nonseasonal dan istilah konstan - yaitu. Sebuah model ARIMA (1,1,0). ARIMA (0,1,1) tanpa perataan eksponensial sederhana: Strategi lain untuk memperbaiki kesalahan autokorelasi dalam model jalan acak disarankan oleh model pemulusan eksponensial sederhana. Ingatlah bahwa untuk beberapa rangkaian waktu nonstasioner (misalnya yang menunjukkan fluktuasi yang bising di sekitar rata-rata yang bervariasi secara perlahan), model jalan acak tidak berjalan sebaik rata-rata pergerakan nilai masa lalu. Dengan kata lain, daripada mengambil pengamatan terbaru sebagai perkiraan pengamatan berikutnya, lebih baik menggunakan rata-rata beberapa pengamatan terakhir untuk menyaring kebisingan dan memperkirakan secara lebih akurat mean lokal. Model pemulusan eksponensial sederhana menggunakan rata-rata pergerakan rata-rata tertimbang eksponensial untuk mencapai efek ini. Persamaan prediksi untuk model pemulusan eksponensial sederhana dapat ditulis dalam sejumlah bentuk ekuivalen matematis. Salah satunya adalah bentuk koreksi yang disebut 8220error correction8221, dimana ramalan sebelumnya disesuaikan dengan kesalahan yang dibuatnya: Karena e t-1 Y t-1 - 374 t-1 menurut definisinya, ini dapat ditulis ulang sebagai : Yang merupakan persamaan peramalan ARIMA (0,1,1) - tanpa perkiraan konstan dengan 952 1 1 - 945. Ini berarti bahwa Anda dapat menyesuaikan smoothing eksponensial sederhana dengan menentukannya sebagai model ARIMA (0,1,1) tanpa Konstan, dan perkiraan koefisien MA (1) sesuai dengan 1-minus-alpha dalam formula SES. Ingatlah bahwa dalam model SES, usia rata-rata data dalam prakiraan 1 periode adalah 1 945. yang berarti bahwa mereka cenderung tertinggal dari tren atau titik balik sekitar 1 945 periode. Dengan demikian, rata-rata usia data dalam prakiraan 1-periode-depan model ARIMA (0,1,1) - tanpa model konstan adalah 1 (1 - 952 1). Jadi, misalnya, jika 952 1 0,8, usia rata-rata adalah 5. Karena 952 1 mendekati 1, model ARIMA (0,1,1) -tanpa-konstan menjadi rata-rata bergerak jangka-panjang, dan sebagai 952 1 Pendekatan 0 menjadi model random-walk-without-drift. Apa cara terbaik untuk memperbaiki autokorelasi: menambahkan istilah AR atau menambahkan istilah MA Dalam dua model sebelumnya yang dibahas di atas, masalah kesalahan autokorelasi dalam model jalan acak diperbaiki dengan dua cara yang berbeda: dengan menambahkan nilai lag dari seri yang berbeda Ke persamaan atau menambahkan nilai tertinggal dari kesalahan perkiraan. Pendekatan mana yang terbaik Aturan praktis untuk situasi ini, yang akan dibahas lebih rinci nanti, adalah bahwa autokorelasi positif biasanya paling baik ditangani dengan menambahkan istilah AR pada model dan autokorelasi negatif biasanya paling baik ditangani dengan menambahkan MA istilah. Dalam deret waktu bisnis dan ekonomi, autokorelasi negatif sering muncul sebagai artefak perbedaan. (Secara umum, differencing mengurangi autokorelasi positif dan bahkan dapat menyebabkan perubahan dari autokorelasi positif ke negatif.) Jadi, model ARIMA (0,1,1), di mana perbedaannya disertai dengan istilah MA, lebih sering digunakan daripada Model ARIMA (1,1,0). ARIMA (0,1,1) dengan perataan eksponensial sederhana konstan dengan pertumbuhan: Dengan menerapkan model SES sebagai model ARIMA, Anda benar-benar mendapatkan fleksibilitas. Pertama-tama, perkiraan koefisien MA (1) dibiarkan negatif. Ini sesuai dengan faktor pemulusan yang lebih besar dari 1 dalam model SES, yang biasanya tidak diizinkan oleh prosedur pemasangan model SES. Kedua, Anda memiliki pilihan untuk menyertakan istilah konstan dalam model ARIMA jika Anda mau, untuk memperkirakan tren nol-rata-rata. Model ARIMA (0,1,1) dengan konstanta memiliki persamaan prediksi: Prakiraan satu periode dari model ini secara kualitatif serupa dengan model SES, kecuali bahwa lintasan perkiraan jangka panjang biasanya adalah Garis miring (kemiringannya sama dengan mu) dan bukan garis horizontal. ARIMA (0,2,1) atau (0,2,2) tanpa pemulusan eksponensial linier konstan: Model pemulusan eksponensial linier adalah model ARIMA yang menggunakan dua perbedaan nonseasonal dalam hubungannya dengan persyaratan MA. Perbedaan kedua dari seri Y bukan hanya perbedaan antara Y dan dirinya tertinggal dua periode, namun ini adalah perbedaan pertama dari perbedaan pertama - i. Perubahan perubahan Y pada periode t. Jadi, perbedaan kedua Y pada periode t sama dengan (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Perbedaan kedua dari fungsi diskrit sama dengan turunan kedua dari fungsi kontinu: ia mengukur kuotasi kuadrat atau quotcurvaturequot dalam fungsi pada suatu titik waktu tertentu. Model ARIMA (0,2,2) tanpa konstan memprediksi bahwa perbedaan kedua dari rangkaian sama dengan fungsi linier dari dua kesalahan perkiraan terakhir: yang dapat disusun ulang sebagai: di mana 952 1 dan 952 2 adalah MA (1) dan MA (2) koefisien. Ini adalah model pemulusan eksponensial linear umum. Dasarnya sama dengan model Holt8217s, dan model Brown8217s adalah kasus khusus. Ini menggunakan rata-rata pergerakan tertimbang eksponensial untuk memperkirakan tingkat lokal dan tren lokal dalam rangkaian. Perkiraan jangka panjang dari model ini menyatu dengan garis lurus yang kemiringannya bergantung pada tren rata-rata yang diamati menjelang akhir rangkaian. ARIMA (1,1,2) tanpa perataan eksponensial eksponensial yang terfragmentasi. Model ini diilustrasikan dalam slide yang menyertainya pada model ARIMA. Ini mengekstrapolasikan tren lokal di akhir seri namun meratakannya pada cakrawala perkiraan yang lebih panjang untuk memperkenalkan catatan konservatisme, sebuah praktik yang memiliki dukungan empiris. Lihat artikel di quotWhy the Damped Trend karyaquot oleh Gardner dan McKenzie dan artikel quotGolden Rulequot oleh Armstrong dkk. Untuk rinciannya Umumnya dianjurkan untuk berpegang pada model di mana setidaknya satu dari p dan q tidak lebih besar dari 1, yaitu jangan mencoba menyesuaikan model seperti ARIMA (2,1,2), karena hal ini cenderung menyebabkan overfitting. Dan isu-isu kuotom-faktorquot yang dibahas secara lebih rinci dalam catatan tentang struktur matematis model ARIMA. Implementasi Spreadsheet: Model ARIMA seperti yang dijelaskan di atas mudah diterapkan pada spreadsheet. Persamaan prediksi hanyalah persamaan linier yang mengacu pada nilai-nilai masa lalu dari rangkaian waktu asli dan nilai kesalahan masa lalu. Dengan demikian, Anda dapat membuat spreadsheet peramalan ARIMA dengan menyimpan data di kolom A, rumus peramalan pada kolom B, dan kesalahan (data minus prakiraan) di kolom C. Rumus peramalan pada sel biasa di kolom B hanya akan menjadi Sebuah ekspresi linier yang mengacu pada nilai-nilai pada baris-kolom sebelumnya dari kolom A dan C, dikalikan dengan koefisien AR atau MA yang sesuai yang tersimpan dalam sel di tempat lain pada spreadsheet. Tampilan 8 Daftar Fitur EViews 8 menawarkan beragam fitur canggih untuk penanganan data, statistik dan Analisis ekonometri, peramalan dan simulasi, penyajian data, dan pemrograman. Meskipun kami cant cant daftar semuanya, daftar berikut menawarkan sekilas pada fitur EViews penting: Penanganan Data Dasar Numerik, alfanumerik (string), dan label nilai seri tanggal. Perpustakaan operator dan statistik, matematika, tanggal dan fungsi string yang ekstensif. Bahasa yang kuat untuk penanganan ekspresi dan transformasi data yang ada menggunakan operator dan fungsi. Sampel dan objek sampel memudahkan pemrosesan pada himpunan bagian data. Dukungan untuk struktur data yang kompleks termasuk data tanggal reguler, data tanggal tidak teratur, data cross-section dengan pengenal observasi, tanggal, dan panel data yang tidak bertanggal. Multi-halaman workfiles. EViews asli, berbasis disk database menyediakan fitur query yang kuat dan integrasi dengan EViews workfiles. Mengkonversi data antara EViews dan berbagai format spreadsheet, statistik, dan database, termasuk (namun tidak terbatas pada): File Microsoft Access dan Excel (termasuk .XSLX dan .XLSM), file Dataset Gauss, file SAS Transport, file asli dan portabel SPSS, File stata, file teks atau biner ASCII yang diformat mentah, database HTML, atau ODBC dan kueri (dukungan ODBC disediakan hanya di Edisi Enterprise). Dukungan OLE untuk menghubungkan keluaran EView, termasuk tabel dan grafik, ke paket lain, termasuk Microsoft Excel, Word dan Powerpoint. Dukungan OLEDB untuk membaca workfiles dan database EViews menggunakan klien atau program kustom OLEDB. Dukungan untuk database FRED (Data Data Federal Reserve). Edisi Enterprise mendukung basis data Global Insight DRIPro dan DRIBase, Haver Analytics DLX, FAME, EcoWin, Datastream, FactSet, dan Moodys. EViews Microsoft Excel Add-in memungkinkan Anda untuk menghubungkan atau mengimpor data dari workfiles dan database EViews dari dalam Excel. Dukungan drag and drop untuk membaca data cukup menjatuhkan file ke dalam EView untuk konversi data asing secara otomatis ke format workfile EViews. Alat yang ampuh untuk membuat halaman kerja baru dari nilai dan tanggal dalam rangkaian yang ada. Pencocokan menggabungkan, bergabung, tambahkan, subset, ubah ukuran, urutkan, dan buat ulang (tumpukan dan hapuskan) file kerja. Konversi frekuensi otomatis yang mudah digunakan saat menyalin atau menghubungkan data antar halaman dengan frekuensi yang berbeda. Konversi frekuensi dan penggabungan kecocokan mendukung pemutakhiran dinamis kapan pun perubahan data menjadi mendasar. Auto-update seri formula yang secara otomatis menghitung ulang setiap kali perubahan data mendasar. Konversi frekuensi yang mudah digunakan, cukup salin atau tautkan data antar halaman dengan frekuensi yang berbeda. Alat untuk resampling dan random number generation untuk simulasi. Pembangkitan bilangan acak untuk 18 fungsi distribusi berbeda menggunakan tiga generator bilangan acak yang berbeda. Penanganan Data Seri Waktu Dukungan terpadu untuk menangani tanggal dan data deret waktu (reguler dan tidak teratur). Dukungan untuk data frekuensi reguler biasa (Tahunan, Semi-tahunan, Triwulanan, Bulanan, Dua Belas, Puluh Dua, Sepuluh Hari, Mingguan, Harian - 5 hari seminggu, Harian - 7 hari seminggu). Dukungan untuk data frekuensi tinggi (intraday), memungkinkan frekuensi berjam-jam, menit, dan detik. Selain itu, ada sejumlah frekuensi reguler yang jarang dijumpai, termasuk Multi-year, Bimonthly, Fortnight, Ten-Day, dan Daily dengan rentang waktu yang sewenang-wenang dalam sehari. Fungsi dan operator seri waktu khusus: tertinggal, perbedaan, perbedaan log, moving averages, dll. Konversi frekuensi: beragam tinggi ke rendah dan rendah ke tinggi. Pemulusan eksponensial: single, double, Holt-Winters, dan ETS smoothing. Alat built-in untuk memutihkan regresi. Penyaringan Hodrick-Prescott Pemfilteran band-pass (frekuensi): Baxter-King, Christiano-Fitzgerald tetap panjang dan filter asimetris sampel penuh. Penyesuaian musiman: Sensus X-13, X-12-ARIMA, TramoSeats, moving average. Interpolasi untuk mengisi nilai yang hilang dalam rangkaian: Linear, Log-Linear, Catmull-Rom Spline, Cardinal Spline. Statistik Ringkasan data dasar oleh-kelompok ringkasan. Pengujian kesetaraan: uji-t, ANOVA (seimbang dan tidak seimbang, dengan atau tanpa varian heteroskedastis), Wilcoxon, Mann-Whitney, Median Chi-square, Kruskal-Wallis, van der Waerden, uji-F, Siegel-Tukey, Bartlett , Levene, Brown-Forsythe. Tabulasi tabulasi satu arah dengan ukuran asosiasi (Koefisien Phi, Cramers V, Koefisien Kontingensi) dan uji kemandirian (Pearson Chi-Square, Likelihood Ratio G2). Kovarian dan analisis korelasi termasuk Pearson, rank rank Spearman, Kendalls tau-a dan tau-b dan analisis parsial. Analisis komponen utama meliputi plot scree, biplots dan plot pemuatan, dan perhitungan nilai komponen tertimbang. Analisis faktor yang memungkinkan perhitungan ukuran asosiasi (termasuk kovariansi dan korelasi), taksiran keunikan, estimasi pemuatan faktor dan nilai faktor, serta melakukan estimasi diagnostik dan rotasi faktor dengan menggunakan satu dari lebih 30 metode ortogonal dan miring yang berbeda. Fungsi Distribusi Empiris (EDF) Pengujian untuk distribusi Normal, Eksponensial, Ekstrim, Logistik, Chi-kuadrat, Weibull, atau Gamma (Kolmogorov-Smirnov, Lilliefors, Cramer-von Mises, Anderson-Darling, Watson). Histogram, Frekuensi Poligon, Poligon Frekuensi Tepi, Histogram Bergeser Rata-rata, CDF-survivor-quantile, Quantile-Quantile, kepadatan kernel, distribusi teoretis yang sesuai, kotak petak. Scatterplots dengan garis regresi parametrik dan non-parametrik (LOWESS, polynomial lokal), regresi kernel (Nadaraya-Watson, lokal linier, polinomial lokal). Atau elips kepercayaan. Autokorelasi Seri Waktu, autokorelasi parsial, korelasi silang, statistik-Q. Tes kausalitas Granger, termasuk kausalitas kausal Granger. Uji akar unit: Augmented Dickey-Fuller, GLS mengubah Dickey-Fuller, Phillips-Perron, KPSS, Optimal Eliot-Richardson-Point Optimal, Ng-Perron. Tes kointegrasi: Johansen, Engle-Granger, Phillips-Ouliaris, Park menambahkan variabel, dan stabilitas Hansen. Tes kemandirian: Tes rasio Ragam Brock, Dechert, Scheinkman dan LeBaron: Lo dan MacKinlay, bootstrap Kim liar, peringkat Wrights, skor peringkat dan tanda tangan. Wald dan beberapa rasio varians rasio perbandingan (Richardson dan Smith, Chow dan Denning). Perhitungan varians dan kovarians jangka panjang: kovarians jangka panjang simetris atau atau satu sisi menggunakan kernel nonparametrik (Newey-West 1987, Andrews 1991), parametrik VARHAC (Den Haan dan Levin 1997), dan kernel yang diprakarsai (Andrews dan Monahan 1992) Metode. Sebagai tambahan, EViews mendukung metode pemilihan bandwidth otomatis Marshall (1991) dan Newey-West (1994) untuk estimator kernel, dan kriteria informasi berdasarkan metode pemilihan panjang lag untuk estimasi VARHAC dan prewhitening. Statistik dan pengujian berdasarkan Panel dan Pool By-group dan by-period. Tes akar unit: Levin-Lin-Chu, Breitung, Im-Pesaran-Shin, Fisher, Hadri. Tes kointegrasi: Pedroni, Kao, Maddala dan Wu. Panel dalam kovarian seri dan komponen utama. Uji kausalitas Dumitrescu-Hurlin (2012). Estimasi Regresi Linear dan nonlinear ordinary least squares (multiple regression). Regresi linier dengan PDL pada sejumlah variabel independen. Regresi kuat. Turunan analitik untuk estimasi nonlinier. Kotak terkecil tertimbang Kesalahan standar kuat White dan Newey-West. Kesalahan standar HAC dapat dihitung dengan menggunakan kernel nonparametrik, parametrik VARHAC, dan metode kernel yang telah digunakan sebelumnya, dan memungkinkan metode seleksi bandwidth Andrews dan Newey-West untuk estimator kernel, dan metode pemilihan lag berdasarkan kriteria informasi untuk estimasi VARHAC dan prewhitening. Regresi kuotil linier dan penyimpangan absolut (LAD), termasuk perhitungan Hubman Sandwich dan perhitungan kovarians bootstrap. Regresi bertahap dengan 7 macam prosedur seleksi. ARMA dan ARMAX Model linier dengan moving average autoregresif, autoregresif musiman, dan kesalahan rata-rata pergerakan musiman. Model nonlinier dengan spesifikasi AR dan SAR. Estimasi menggunakan metode backcasting Box dan Jenkins, atau dengan metode kuadrat bersyarat. Variabel Instrumental dan GMM Linear dan nonlinear two-stage least squaresinstrumental variables (2SLSIV) dan estimasi Generalized Method of Moments (GMM). Estimasi linear dan nonlinear 2SLSIV dengan kesalahan AR dan SAR. Informasi Terbatas Perkiraan Kemungkinan Maksimum (LIML) dan K-class. Spesifikasi matriks pembobotan GMM yang luas (White, HAC, User-provided) dengan kontrol terhadap iterasi matriks bobot. Pilihan estimasi GMM mencakup estimasi pembaharuan terus menerus (CUE), dan sejumlah opsi kesalahan standar baru, termasuk kesalahan standar Windmeijer. Diagnostik khusus IVGMM meliputi Uji Orthogonal Instrumen, Uji Endogeneitas Regresor, Uji Instrumen Lemah, dan uji breakpoint spesifik GMM ARCHGARCH GARCH (p, q), GARIS, TARCH, Komponen GARCH, ARCH Power, GARCH Terintegrasi. Persamaan mean linier atau nonlinier dapat mencakup istilah ARCH dan ARMA, baik persamaan mean dan varians yang memungkinkan variabel eksogen. Normal, Student t, dan Generalized Error Distributions. Bollerslev-Wooldridge kesalahan standar yang kuat. In-dan out-of sample prakiraan varians bersyarat dan mean, dan komponen permanen. Model Variabel Ketergantungan Terbatas Binary Logit, Probit, dan Gompit (Nilai Ekstrim). Memerintahkan Logit, Probit, dan Gompit (Nilai Ekstrim). Model disensor dan terpotong dengan kesalahan nilai normal, logistik, dan ekstrim (Tobit, dll.). Hitunglah model dengan spesifikasi Poisson, negative binomial, dan quasi-maximum likelihood (QML). Model Seleksi Heckman. Kesalahan standar kuat HuberWhite Model hitungan mendukung model linier umum atau kesalahan standar QML. Hosmer-Lemeshow dan Andrews Goodness-of-Fit untuk pengujian model biner. Mudah menyimpan hasil (termasuk residu dan gradien umum) ke objek EView baru untuk analisis lebih lanjut. Mesin estimasi GLM umum dapat digunakan untuk memperkirakan beberapa model ini, dengan opsi untuk memasukkan kovariansi yang kuat. Panel DataPooled Time Series, Cross-Sectional Data Linear dan estimasi nonlinier dengan penampang aditif dan efek tetap atau acak. Pilihan estimator kuadratik tidak bias (QUEs) untuk varians komponen dalam model efek acak: Swamy-Arora, Wallace-Hussain, Wansbeek-Kapteyn. Estimasi 2SLSIV dengan penampang melintang dan efek tetap atau acak. Estimasi dengan kesalahan AR menggunakan kuadrat terkecil nonlinear pada spesifikasi yang ditransformasikan. Kuode terkecil yang umum, estimasi 2SLSIV umum, estimasi GMM yang memungkinkan spesifikasi cross-section atau period heteroskedastic dan berkorelasi. Estimasi data panel linier dinamis menggunakan perbedaan pertama atau penyimpangan ortogonal dengan instrumen spesifik periode tertentu (Arellano-Bond). Tes korelasi serial panel (Arellano-Bond). Perhitungan kesalahan standar yang kuat mencakup tujuh jenis kesalahan standar White and Panel-corrected standard (PCSE) yang kuat. Pengujian batasan koefisien, variabel yang dihilangkan dan berlebihan, Hausman menguji efek acak berkorelasi. Unit uji akar unit: Levin-Lin-Chu, Breitung, Im-Pesaran-Shin, uji tipe Fisher menggunakan tes ADF dan PP (Maddala-Wu, Choi), Hadri. Perkiraan kointegrasi panel: OLS yang dimodifikasi sepenuhnya (FMOLS, Pedroni 2000) atau Kotak Terkenal Biasa Dinamis (DOLS, Kao dan Chaing 2000, Mark dan Sul 2003). Model Linear Generalized Normal, Poisson, Binomial, Binomial Negatif, Gamma, Inverse Gaussian, Mena Eksponensial, Mean Daya, Keluarga Squate Binomial. Identitas, log, log-complement, logit, probit, log-log, log-log gratis, invers, power, rasio odds daya, Box-Cox, Roda-Cox odds ratio link functions. Perbedaan varians dan frekuensi sebelumnya. Spesifikasi dispersi fixed, Pearson Chi-Sq, penyimpangan, dan spesifikasi dispersi yang ditentukan pengguna. Dukungan untuk estimasi QML dan pengujian. Quadratic Hill Climbing, Newton-Raphson, IRLS - Fisher Scoring, dan algoritma estimasi BHHH. Kovarian koefisien biasa dihitung dengan menggunakan Hessian yang diharapkan atau diamati atau produk luar gradien. Perkiraan kovariansi yang kuat menggunakan metode GLM, HAC, atau HuberWhite. Single Equation Cointegrating Regression Support untuk tiga metode estimasi yang paling efisien, OLS yang dimodifikasi sepenuhnya (Phillips dan Hansen 1992), Canonical Cointegrating Regression (Park 1992), dan Dynamic OLS (Saikkonen 1992, Stock dan Watson 1993 Engle dan Granger (1987) dan Phillips dan Ouliaris (1990) uji berbasis residual, uji ketidakstabilan Hansens (1992b), dan Parks (1992) menambahkan uji variabel. Spesifikasi fleksibel dari trend dan deterministik regresor dalam persamaan dan spesifikasi regresi kointegrating. Estimasi fitur varians jangka panjang yang lengkap FMOLS dan CCR Pemilihan jeda otomatis atau tetap untuk kelambatan DOLS dan lead dan untuk regresi pemutihan varians jangka panjang. Rescaled OLS dan perhitungan error standar yang kuat untuk DOLS. Kemungkinan Maksimum yang Ditentukan Pengguna Gunakan ekspresi seri EViews standar untuk menjelaskan kemungkinan log kontribusi. Contoh untuk logit multinomial dan kondisional, model transformasi Box-Cox, model switching disekuilibrium, model probit S dengan kesalahan heteroskedastis, nested logit, pemilihan sampel Heckman, dan model bahaya Weibull. Sistem Persamaan Estimasi linier dan nonlinear. Kuadrat terkecil, 2SLS, estimasi bobot tertimbang, Regresi yang Tidak Terkait, Tiga Tahap Kuadrat terkecil GMM dengan matriks pembobotan White dan HAC. Perkiraan AR menggunakan kuadrat terkecil nonlinear pada spesifikasi yang ditransformasikan. Informasi Lengkap Kemungkinan Maksimum (FIML). Perkirakan faktor struktural dalam VARs dengan menerapkan batasan jangka pendek atau jangka panjang. Bayesian VARs. Fungsi respon impuls dalam berbagai format tabel dan grafik dengan kesalahan standar dihitung secara analitis atau dengan metode Monte Carlo. Guncangan respon impuls dihitung dari faktorisasi Cholesky, residu deviasi satu unit atau satu standar (mengabaikan korelasi), impuls umum, faktorisasi struktural, atau bentuk vectormatrix yang ditentukan pengguna. Menerapkan dan menguji batasan linier pada hubungan kointegrasi dan dan koefisien penyesuaian dalam model VEC. Melihat atau menghasilkan hubungan kointegrasi dari model VEC yang diperkirakan. Diagnostik ekstensif termasuk: uji kausalitas Granger, uji pengecualian lag bersama, evaluasi kriteria panjang lag, uji korelasi, autokorelasi, normalitas dan heteroskedastisitas, pengujian kointegrasi, diagnostik multivariat lainnya. Korelasi Konstruktif Bersyarat Multivariat (p, q), Diagonal VECH (p, q), diagonal BEKK (p, q), dengan istilah asimetris. Pilihan parameterisasi yang ekstensif untuk matriks koefisien VEKS Diagonal. Variabel eksogen yang diizinkan dalam mean dan varians persamaan nonlinier dan persyaratan AR diperbolehkan dalam persamaan rata-rata. Bollerslev-Wooldridge kesalahan standar yang kuat. Normal atau Student t multivariate error distribution Pilihan derivatif numerik analitik atau (cepat atau lambat). (Analytics derivatif tidak tersedia untuk beberapa model yang kompleks.) Menghasilkan kovarians, varians, atau korelasi dalam berbagai format tabel dan grafik dari model ARCH yang diperkirakan. Algoritma filter State Space Kalman untuk memperkirakan model struktural single dan multinquation yang ditentukan pengguna. Variabel eksogen dalam persamaan negara dan spesifikasi varians sepenuhnya parameter. Buat satu langkah di depan, disaring, atau diperhalus, keadaan, dan kesalahan. Contohnya meliputi parameter time-varying, multivariat ARMA, dan model volatilitas stokastik quasilikelihood. Testing and Evaluation Actual, pas, residual plots. Uji Wald untuk pembedaan koefisien linier dan nonlinier elastisitas kepercayaan menunjukkan wilayah kepercayaan bersama dari dua fungsi parameter yang diperkirakan. Diagnostik koefisien lainnya: koefisien standar dan elastisitas koefisien, interval kepercayaan, faktor inflasi varian, dekomposisi varians koefisien. Variabel LR terlewati dan berlebihan, korelasi residual residual dan kuadrat dan statistik Q, korelasi serial residual dan uji ARCH LM. Tes heteroskedastisitas White, Breusch-Pagan, Godfrey, Harvey dan Glejser. Diagnostik stabilitas: uji breakpoint dan perkiraan Chow, uji breakpoint Quandt-Andrews yang tidak diketahui, uji breakpoint Bai-Perron, tes RESET Ramsey, estimasi rekursif OLS, statistik pengaruh, plot leverage. Diagnostik persamaan ARMA: grafik atau tabel akar invers dari polinomial AR andor MA, membandingkan pola autokorelasi teoritis (perkiraan) dengan pola korelasi aktual untuk residu struktural, menampilkan respon impuls ARMA terhadap kejutan inovasi dan frekuensi ARMA spektrum. Mudah menyimpan hasil (koefisien, koefisien matriks kovariansi, residu, gradien, dll.) Ke objek EView untuk analisis lebih lanjut. Lihat juga Estimasi dan Sistem Persamaan untuk prosedur pengujian khusus tambahan. Peramalan dan Simulasi Peramalan statis atau dinamis di luar perkiraan dari perkiraan objek persamaan dengan perhitungan kesalahan standar ramalan. Grafik perkiraan dan evaluasi perkiraan sampel: RMSE, MAE, MAPE, Theil Koefisien Ketidakseimbangan dan proporsi alat bangunan model state-of-the-art untuk peramalan beberapa persamaan dan simulasi multivariat. Model persamaan dapat dimasukkan dalam teks atau sebagai link untuk memperbarui otomatis pada re-estimasi. Tampilkan struktur ketergantungan atau variabel endogen dan eksogen dari persamaan Anda. Gauss-Seidel, pemecah model Broyden dan Newton untuk simulasi stochastic dan stokastik. Solusi forward non-stokastik memecahkan harapan model yang konsisten. Simulasi Stochasitc dapat menggunakan residu bootstrap. Selesaikan masalah kontrol sehingga variabel endogen mencapai target yang ditentukan pengguna. Normalisasi persamaan yang canggih, menambahkan faktor dan mengesampingkan dukungan. Mengelola dan membandingkan beberapa skenario solusi yang melibatkan berbagai rangkaian asumsi. Tampilan dan tampilan model built-in menampilkan hasil simulasi dalam bentuk grafis atau tabular. Grafik dan Tabel Garis, titik petak, area, bar, spike, musiman, pie, xy-line, scatterplots, boxplots, error bar, high-low-open-close, dan area band. Grafik kategoris dan ringkasan yang kuat dan mudah digunakan. Memperbarui otomatis grafik yang diperbarui sebagai perubahan data mendasar. Informasi pengamatan dan tampilan nilai saat Anda mengarahkan kursor ke titik pada grafik. Histogram, sejarah bergeser rata-rata, poligon frekuensi, poligon frekuensi tepi, kotak petak, kerapatan kernel, distribusi teoretis yang sesuai, kotak peti, CDF, survivor, quantile, quantile-quantile. Scatterplots dengan kombinasi parametrik dan nonparametrik kernel (Nadaraya-Watson, lokal linier, polinomial lokal) dan tetangga terdekat (LOWESS) garis regresi, atau elips kepercayaan. Customization point-and-click atau command-based. Ekstensif menyesuaikan latar belakang grafik, bingkai, legenda, sumbu, penskalaan, garis, simbol, teks, bayangan, pudar, dengan fitur grafik grafik yang disempurnakan. Tabel kustomisasi dengan kontrol atas sel font wajah, ukuran, dan warna, warna latar belakang sel dan perbatasan, penggabungan, dan anotasi. Salin dan tempel grafik ke aplikasi Windows lainnya, atau simpan grafik sebagai metafiles biasa atau metafiles Windows, encapsulated file PostScript, bitmap, GIF, PNGs atau JPGs. Salin dan tempel tabel ke aplikasi lain atau simpan ke file RTF, HTML, atau teks. Mengelola grafik dan tabel bersama dalam objek spul yang memungkinkan Anda menampilkan banyak hasil dan analisis dalam satu objek Perintah dan Pemrograman Bahasa perintah berorientasi objek menyediakan akses ke item menu Batch eksekusi perintah dalam file program. Looping dan kondisi percabangan, subrutin, dan pengolahan makro. Objek vektor string dan string untuk pemrosesan string. Ekstensif perpustakaan string dan daftar string fungsi. Dukungan matriks yang luas: manipulasi matriks, multiplikasi, inversi, produk Kronecker, solusi eigenvalue, dan dekomposisi nilai tunggal. Antarmuka Eksternal dan Add-Ins EViews Dukungan server otomasi COM sehingga program eksternal atau skrip dapat meluncurkan atau mengendalikan EViews, mentransfer data, dan menjalankan perintah EViews. EViews menawarkan aplikasi dukungan klien COM Automation untuk server MATLAB dan R sehingga EViews dapat digunakan untuk meluncurkan atau mengendalikan aplikasi, mentransfer data, atau menjalankan perintah. EViews Microsoft Excel Add-in menawarkan antarmuka sederhana untuk mengambil dan menghubungkan dari dalam Microsoft Excel (2000 dan yang lebih baru) ke objek seri dan matriks yang tersimpan dalam workfiles dan database EViews. Infrastruktur Add-in EViews menawarkan akses tanpa batas ke program yang ditentukan pengguna menggunakan perintah, menu EViews standar, dan antarmuka objek. Download dan instal add-in standar dari situs web EViews. Untuk informasi penjualan silahkan email saleseviews Untuk dukungan teknis silahkan email supporteviews Mohon sertakan nomor seri anda dengan semua korespondensi email. Pemodelan rata-rata dan pemulusan eksponensial Sebagai langkah awal untuk bergerak melampaui model mean, model jalan acak, dan model tren linier, pola dan tren nonseasonal dapat diekstrapolasikan dengan menggunakan model rata-rata bergerak atau pemulusan. . Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotsmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat perataan (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata-rata yang paling sederhana adalah. Rata-rata Bergerak Sederhana (rata-rata tertimbang): Prakiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t- (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model rata-rata bergerak sederhana (SMA) sama dengan model jalan acak (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk mendapatkan kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil rata-rata. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia memilih sebagian besar quot quotisequot di Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang lebih halus: Rata-rata pergerakan sederhana 5-langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai yang terakhir diamati, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian dapat menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangkan kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata pergerakan sederhana 9-term, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, usia rata-rata meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata bergerak 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 -term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam ramalan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapat bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan perkiraan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam ramalan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, bila 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada perkiraan rata-rata bergerak sederhana (SMA) karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada tingkat Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang masuk akal, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model jalan acak. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linier konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena opsi penyesuaian musiman dinonaktifkan saat jenis model diatur ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang tepat per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau paling tidak tidak terlalu buruk untuk 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan kecenderungan lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada titik waktu yang berbeda. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot dari model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke rangkaian Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat lagi, di bawah sederhana Eksponensial smoothing, ini akan menjadi ramalan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi pemulusan eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Lens menghitung perkiraan tingkat dan kecenderungan lokal dengan menghaluskan data terbaru, namun kenyataan bahwa hal itu terjadi dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat t, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Dapat diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian rata-rata umur data yang digunakan dalam memperkirakan tingkat lokal seri, usia rata-rata data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata pukul 10.006 125. Ini adalah angka yang sangat tepat karena keakuratan perkiraan 946 bukan benar-benar 3 angka desimal, namun memiliki tatanan umum yang sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir seri daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang wajar untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat menyesuaikan konstanta pemulusan tren secara manual sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi terbaik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, smoothing eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi horisontal kuotometer. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Ada kemungkinan untuk menghitung interval kepercayaan di sekitar perkiraan jangka panjang yang dihasilkan oleh model penghalusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat saat perangkat lunak daripada smoothing sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke bagian atas halaman.)
Stock-options-tracking-software
Tax-on-stock-options-trading