Perkiraan berbasis-gila-untuk-satu-tahun-bergerak-rata-rata

Perkiraan berbasis-gila-untuk-satu-tahun-bergerak-rata-rata

Online-business-to-business-trading-platform-for-small-business
Pangeran-forex-gk
Pokemon-trading-card-game-online-novas-cartas


Pemilik forex-forex Apa-rate-are-stock-options-tax-at Moving-average-nse Hukum-trading-forex-dalam-islam Stock-options-how-to-trade Trade-show-options

Moving Average Forecasting Pendahuluan. Seperti yang Anda duga, kita melihat beberapa pendekatan yang paling primitif terhadap peramalan. Tapi mudah-mudahan ini setidaknya merupakan pengantar yang berharga untuk beberapa masalah komputasi yang terkait dengan penerapan prakiraan di spreadsheet. Dalam vena ini kita akan melanjutkan dengan memulai dari awal dan mulai bekerja dengan Moving Average prakiraan. Moving Average Forecasts. Semua orang terbiasa dengan perkiraan rata-rata bergerak terlepas dari apakah mereka yakin itu. Semua mahasiswa melakukannya setiap saat. Pikirkan nilai tes Anda di kursus di mana Anda akan menjalani empat tes selama semester ini. Mari kita asumsikan Anda mendapatkan 85 pada tes pertama Anda. Apa yang akan Anda perkirakan untuk skor tes kedua Anda Menurut Anda apa yang akan diprediksi guru Anda untuk skor tes Anda berikutnya Menurut Anda, apa yang diperkirakan prediksi teman Anda untuk skor tes Anda berikutnya Menurut Anda apa perkiraan orang tua Anda untuk skor tes berikutnya Anda? Semua blabbing yang mungkin Anda lakukan terhadap teman dan orang tua Anda, mereka dan gurumu sangat mengharapkan Anda untuk mendapatkan sesuatu di area yang baru Anda dapatkan. Nah, sekarang mari kita asumsikan bahwa meskipun promosi diri Anda ke teman Anda, Anda terlalu memperkirakan perkiraan Anda dan membayangkan bahwa Anda dapat belajar lebih sedikit untuk tes kedua dan Anda mendapatkan nilai 73. Sekarang, apa yang menarik dan tidak peduli? Mengantisipasi Anda akan mendapatkan pada tes ketiga Ada dua pendekatan yang sangat mungkin bagi mereka untuk mengembangkan perkiraan terlepas dari apakah mereka akan berbagi dengan Anda. Mereka mungkin berkata pada diri mereka sendiri, quotThis guy selalu meniup asap tentang kecerdasannya. Dia akan mendapatkan yang lain lagi jika dia beruntung. Mungkin orang tua akan berusaha lebih mendukung dan berkata, quotWell, sejauh ini Anda sudah mendapat nilai 85 dan angka 73, jadi mungkin Anda harus memikirkan tentang (85 73) 2 79. Saya tidak tahu, mungkin jika Anda kurang berpesta Dan werent mengibaskan musang seluruh tempat dan jika Anda mulai melakukan lebih banyak belajar Anda bisa mendapatkan skor yang lebih tinggi.quot Kedua perkiraan ini sebenarnya bergerak perkiraan rata-rata. Yang pertama hanya menggunakan skor terbaru untuk meramalkan kinerja masa depan Anda. Ini disebut perkiraan rata-rata bergerak menggunakan satu periode data. Yang kedua juga merupakan perkiraan rata-rata bergerak namun menggunakan dua periode data. Mari kita asumsikan bahwa semua orang yang terhilang dengan pikiran hebat ini telah membuat Anda kesal dan Anda memutuskan untuk melakukannya dengan baik pada tes ketiga karena alasan Anda sendiri dan untuk memberi nilai lebih tinggi di depan kuotasi Anda. Anda mengikuti tes dan nilai Anda sebenarnya adalah 89 Setiap orang, termasuk Anda sendiri, terkesan. Jadi sekarang Anda memiliki ujian akhir semester yang akan datang dan seperti biasa Anda merasa perlu memandu semua orang untuk membuat prediksi tentang bagaimana Anda akan melakukan tes terakhir. Nah, semoga anda melihat polanya. Nah, semoga anda bisa melihat polanya. Yang Anda percaya adalah Whistle paling akurat Sementara Kami Bekerja. Sekarang kita kembali ke perusahaan pembersih baru kita yang dimulai oleh saudara tirimu yang terasing bernama Whistle While We Work. Anda memiliki beberapa data penjualan terakhir yang ditunjukkan oleh bagian berikut dari spreadsheet. Kami pertama kali mempresentasikan data untuk perkiraan rata-rata pergerakan tiga periode. Entri untuk sel C6 harus Sekarang Anda dapat menyalin formula sel ini ke sel lain C7 sampai C11. Perhatikan bagaimana rata-rata pergerakan data historis terbaru namun menggunakan tiga periode paling terakhir yang tersedia untuk setiap prediksi. Anda juga harus memperhatikan bahwa kita benar-benar tidak perlu membuat ramalan untuk periode sebelumnya untuk mengembangkan prediksi terbaru kita. Ini jelas berbeda dengan model smoothing eksponensial. Ive menyertakan prediksi quotpast karena kami akan menggunakannya di halaman web berikutnya untuk mengukur validitas prediksi. Sekarang saya ingin menyajikan hasil yang analog untuk perkiraan rata-rata pergerakan dua periode. Entri untuk sel C5 harus Sekarang Anda dapat menyalin formula sel ini ke sel lain C6 sampai C11. Perhatikan bagaimana sekarang hanya dua data historis terbaru yang digunakan untuk setiap prediksi. Sekali lagi saya telah menyertakan prediksi quotpast untuk tujuan ilustrasi dan untuk nanti digunakan dalam validasi perkiraan. Beberapa hal lain yang penting diperhatikan. Untuk perkiraan rata-rata pergerakan m-m, hanya m data terakhir yang digunakan untuk membuat prediksi. Tidak ada hal lain yang diperlukan. Untuk perkiraan rata-rata pergerakan m-period, saat membuat prediksi quotpast predictquote, perhatikan bahwa prediksi pertama terjadi pada periode m 1. Kedua masalah ini akan sangat signifikan saat kita mengembangkan kode kita. Mengembangkan Fungsi Bergerak Rata-rata. Sekarang kita perlu mengembangkan kode ramalan rata-rata bergerak yang bisa digunakan lebih fleksibel. Kode berikut. Perhatikan bahwa masukan adalah untuk jumlah periode yang ingin Anda gunakan dalam perkiraan dan rangkaian nilai historis. Anda bisa menyimpannya dalam buku kerja apa pun yang Anda inginkan. Fungsi MovingAverage (Historis, NumberOfPeriods) Sebagai Single Declaring dan variabel inisialisasi Dim Item Sebagai Variant Dim Counter Sebagai Akumulasi Dim Integer Sebagai Single Dim HistoricalSize As Integer Inisialisasi variabel Counter 1 Akumulasi 0 Menentukan ukuran array historis HistoricalSize Historical.Count Untuk Counter 1 To NumberOfPeriods Mengumpulkan jumlah yang sesuai dari nilai yang teramati terakhir yang terakhir Akumulasi Akumulasi Historis (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Kode akan dijelaskan di kelas. Anda ingin memposisikan fungsi pada spreadsheet sehingga hasil perhitungan muncul di tempat yang seharusnya seperti berikut. Contoh Perhitungan Prakiraan A.1 Metode Perhitungan Prakiraan Dua belas metode untuk menghitung perkiraan tersedia. Sebagian besar metode ini menyediakan kontrol pengguna terbatas. Misalnya, bobot yang ditempatkan pada data historis terkini atau rentang tanggal data historis yang digunakan dalam perhitungan mungkin ditentukan. Contoh berikut menunjukkan prosedur perhitungan untuk masing-masing metode peramalan yang ada, dengan data set identik. Contoh berikut menggunakan data penjualan 2004 dan 2005 yang sama untuk menghasilkan perkiraan penjualan tahun 2006. Selain perhitungan perkiraan, masing-masing contoh mencakup perkiraan simulasi tahun 2005 untuk jangka waktu tiga bulan (opsi pemrosesan 19 3) yang kemudian digunakan untuk persentase akurasi dan perhitungan deviasi absolut rata-rata (penjualan aktual dibandingkan dengan perkiraan simulasi). A.2 Kriteria Evaluasi Kinerja Perkiraan Tergantung pada pilihan pilihan pemrosesan dan pada tren dan pola yang ada dalam data penjualan, beberapa metode peramalan akan berkinerja lebih baik daripada yang lain untuk kumpulan data historis tertentu. Metode peramalan yang sesuai untuk satu produk mungkin tidak sesuai untuk produk lain. Hal ini juga tidak mungkin bahwa metode peramalan yang memberikan hasil yang baik pada satu tahap siklus hidup produk akan tetap sesuai sepanjang keseluruhan siklus kehidupan. Anda dapat memilih antara dua metode untuk mengevaluasi kinerja metode peramalan saat ini. Ini adalah Mean Absolute Deviation (MAD) dan Persen of Accuracy (POA). Kedua metode evaluasi kinerja ini memerlukan data penjualan historis untuk jangka waktu yang ditentukan pengguna. Periode waktu ini disebut periode holdout atau periode yang paling sesuai (PBF). Data dalam periode ini digunakan sebagai dasar untuk merekomendasikan metode peramalan mana yang akan digunakan dalam membuat perkiraan proyeksi berikutnya. Rekomendasi ini khusus untuk setiap produk, dan mungkin berubah dari satu generasi perkiraan ke yang berikutnya. Dua metode evaluasi kinerja perkiraan ditunjukkan di halaman berikut contoh dari dua belas metode peramalan. A.3 Metode 1 - Persentase Tertentu Selama Tahun Terakhir Metode ini mengalikan data penjualan dari tahun sebelumnya oleh faktor yang ditentukan pengguna misalnya, 1,10 untuk kenaikan 10, atau 0,97 untuk penurunan 3. Riwayat penjualan yang disyaratkan: Satu tahun untuk menghitung perkiraan ditambah jumlah waktu yang ditentukan pengguna untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.4.1 Prakiraan Perhitungan Rentang sejarah penjualan digunakan dalam menghitung faktor pertumbuhan (opsi pemrosesan 2a) 3 dalam contoh ini. Jumlahkan tiga bulan terakhir tahun 2005: 114 119 137 370 Jumlah tiga bulan yang sama untuk tahun sebelumnya: 123 139 133 395 Faktor yang dihitung 370395 0,9367 Hitung prakiraan: penjualan Januari 128 penjualan di 1289367 119.8036 atau sekitar 120 Februari, 2005 penjualan 117 0,9367 109,5939 atau sekitar 110 Maret, 2005 penjualan 115 0.9367 107.7205 atau sekitar 108 A.4.2 Perhitungan Prakiraan Simulasi Jumlah tiga bulan di tahun 2005 sebelum periode holdout (Juli, Agustus, September): 129 140 131 400 Jumlah tiga bulan yang sama untuk Tahun sebelumnya: 141 128 118 387 Faktor yang diperhitungkan 400387 1.033591731 Perhitungan perkiraan simulasi: penjualan Oktober 123 penjualan 1.0233591731 127.13178 November, 2004 penjualan 139 1.033591731 143.66925 Desember, 2004 penjualan 133 1.033591731 137.4677 A.4.3 Persen Perhitungan Akurat POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Perhitungan Deviasi Absolut Mutual MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metode 3 - Tahun lalu sampai Tahun Ini Metode ini mengumpulkan data penjualan dari tahun sebelumnya sampai tahun depan. Riwayat penjualan yang disyaratkan: Satu tahun untuk menghitung perkiraan ditambah jumlah periode waktu yang ditentukan untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.6.1 Prakiraan Perhitungan Jumlah periode yang harus dimasukkan rata-rata (opsi pemrosesan 4a) 3 pada contoh ini Untuk setiap bulan perkiraan, rata-rata data tiga bulan sebelumnya. Perkiraan bulan Januari: 114 119 137 370 370, 370 3 123.333 atau 123 ramalan Februari: 119 137 123 379, 379 3 126.333 atau 126 perkiraan Maret: 137 123 126 379, 386 3 128,667 atau 129 A.6.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2005 (129 140 131) 3 133.3333 November 2005 penjualan (140 131 114) 3 128.3333 Penjualan pada bulan Desember 2005 (131 114 119) 3 121.3333 A.6.3 Persen Perhitungan Akurasi POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mean Mutlak Perhitungan Deviasi MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metode 5 - Pendekatan Linier Pendekatan Linier menghitung tren berdasarkan dua titik data penjualan historis. Kedua titik tersebut mendefinisikan garis tren lurus yang diproyeksikan ke masa depan. Gunakan metode ini dengan hati-hati, perkiraan jangka panjang diimbangi oleh perubahan kecil hanya dalam dua titik data. Diperlukan riwayat penjualan: Jumlah periode yang termasuk dalam regresi (opsi pemrosesan 5a), ditambah 1 ditambah jumlah periode waktu untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.8.1 Prakiraan Perhitungan Jumlah periode yang termasuk dalam regresi (opsi pemrosesan 6a) 3 pada contoh ini Untuk setiap bulan perkiraan, tambahkan kenaikan atau penurunan selama periode yang ditentukan sebelum periode holdout periode sebelumnya. Rata-rata tiga bulan sebelumnya (114 119 137) 3 123.3333 Ringkasan tiga bulan sebelumnya dengan bobot yang dipertimbangkan (114 1) (119 2) (137 3) 763 Perbedaan antara nilai 763 - 123.3333 (1 2 3) 23 Rasio ( 12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 232 11.5 Value2 Rasio average - value1 123.3333 - 11.5 2 100.3333 Prakiraan (1 n) nilai1 nilai2 4 11.5 100.3333 146.333 atau 146 Prakiraan 5 11.5 100.3333 157.8333 atau 158 Prakiraan 6 11.5 100.3333 169.3333 Atau 169 A.8.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2004: Rata-rata tiga bulan sebelumnya (129 140 131) 3 133.3333 Ringkasan tiga bulan sebelumnya dengan bobot yang dipertimbangkan (129 1) (140 2) (131 3) 802 Perbedaan antara Nilai 802 - 133.3333 (1 2 3) 2 Rasio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 22 1 Value2 Rasio average - value1 133.3333 - 1 2 131.3333 Prakiraan (1 n) nilai1 nilai2 4 1 131.3333 135.3333 November 2004 penjualan Rata-rata tiga bulan sebelumnya (140 131 114) 3 128.3333 Ringkasan tiga bulan sebelumnya dengan berat yang dipertimbangkan (140 1) (131 2) (114 3) 744 Perbedaan antara nilai 744 - 128.3333 (1 2 3) -25.9999 Value1 DifferenceRatio -25.99992 -12.9999 Value2 Average - value1 ratio 128.3333 - (-12.9999) 2 154.3333 Prakiraan 4 -12.9999 154.3333 102.3333 Penjualan Desember 2004 Rata-rata dari tiga bulan sebelumnya (131 114 119) 3 121.3333 Ringkasan tiga bulan sebelumnya dengan bobot yang dipertimbangkan ( 131 1) (114 2) (119 3) 716 Perbedaan antara nilai 716 - 121.3333 (1 2 3) -11.9999 Value1 DifferenceRatio -11.99992 -5.9999 Value2 Rasio average - value1 121.3333 - (-5.9999) 2 133.3333 Prakiraan 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Persen Perhitungan Akurasi POA (135.33 102.33 109.33) (114 119 137) 100 93,78 A.8,4 Perhitungan Deviasi Absolut Mutual MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Metode 7 - Secon D Degree Approximation Regresi Linier menentukan nilai a dan b dalam rumus ramalan Y a bX dengan tujuan untuk menyesuaikan garis lurus dengan data riwayat penjualan. Pendekatan Gelar Kedua serupa. Namun, metode ini menentukan nilai a, b, dan c dalam rumus ramalan Y a bX cX2 dengan tujuan untuk menyesuaikan kurva dengan data riwayat penjualan. Metode ini mungkin berguna saat produk berada dalam transisi antara tahap siklus hidup. Misalnya, ketika produk baru bergerak dari tahap pertumbuhan, tren penjualan mungkin akan meningkat. Karena istilah orde kedua, ramalan dapat dengan cepat mendekati tak terhingga atau turun menjadi nol (tergantung pada apakah koefisien c positif atau negatif). Oleh karena itu, metode ini hanya berguna dalam jangka pendek. Perkiraan spesifikasi: Rumus menemukan a, b, dan c agar sesuai dengan kurva dengan tepat tiga titik. Anda menentukan n dalam opsi pemrosesan 7a, jumlah periode waktu data untuk mengumpulkan ke masing-masing dari tiga titik. Dalam contoh ini n 3. Oleh karena itu, data penjualan aktual untuk bulan April sampai Juni digabungkan ke poin pertama, Q1. Juli sampai September ditambahkan bersama untuk menciptakan Q2, dan Oktober sampai Desember ke Q3. Kurva akan disesuaikan dengan tiga nilai Q1, Q2, dan Q3. Diperlukan riwayat penjualan: 3 n periode untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi perkiraan kinerja (PBF). Jumlah periode untuk memasukkan (opsi pemrosesan 7a) 3 dalam contoh ini Gunakan tiga bulan sebelumnya (3 n) bulan dalam blok tiga bulan: Q1 (Apr - Jun) 125 122 137 384 Q2 (Jul - Sep) 129 140 131 400 Q3 ( Okt - Dec) 114 119 137 370 Langkah selanjutnya adalah menghitung tiga koefisien a, b, dan c yang akan digunakan dalam rumus peramalan Y a bX cX2 (1) Q1 a bX cX2 (di mana X 1) abc (2) Q2 A bX cX2 (di mana X 2) a 2b 4c (3) Q3 a bX cX2 (di mana X 3) a 3b 9c Selesaikan tiga persamaan secara simultan untuk menemukan b, a, dan c: kurangi persamaan (1) dari persamaan (2) Dan memecahkan untuk b (2) - (1) Q2 - Q1 b 3c Mengganti persamaan ini untuk b ke persamaan (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Akhirnya, ganti persamaan ini untuk a dan b ke Persamaan (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Metode Pendekatan Derajat Gelar Kedua menghitung a, b, dan c sebagai berikut: Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Januari sampai perkiraan bulan Maret (X4): (322 340 - 368) 3 2943 98 Per periode April sampai ramalan bulan Juni (X5): (322 425 - 575) 3 57.333 atau 57 per periode Juli sampai perkiraan bulan September (X6): (322 510 - 828) 3 1,33 atau 1 per periode Oktober sampai Desember (X7) (322 599 - 11273 -70 A.9.2 Simulasi Prakiraan Perhitungan Penjualan Oktober, November dan Desember 2004: Q1 (Jan - Mar) 360 Q2 (Apr - Jun) 384 Q3 (Jul - Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9,3 Persen Perhitungan Akurasi POA (136 136 136) 110.77 A.9.4 Perhitungan Deviasi Absolut Mutual MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Metode 8 - Metode Fleksibel Metode Fleksibel (Persen Lebih dari 10 Bulan Sebelumnya) serupa dengan Metode 1, Persen dari Tahun Terakhir. Kedua metode tersebut melipatgandakan data penjualan dari periode waktu sebelumnya oleh faktor yang ditentukan pengguna, lalu memproyeksikan hasilnya ke masa depan. Dalam metode Percent Over Last Year, proyeksi didasarkan pada data dari periode waktu yang sama tahun sebelumnya. Metode Fleksibel menambahkan kemampuan untuk menentukan jangka waktu selain periode yang sama tahun lalu untuk digunakan sebagai dasar perhitungan. Faktor perkalian Misalnya, tentukan 1,15 pada opsi pemrosesan 8b untuk meningkatkan data riwayat penjualan sebelumnya sebesar 15. Periode dasar. Misalnya, n 3 akan menyebabkan perkiraan pertama didasarkan pada data penjualan pada bulan Oktober 2005. Riwayat penjualan minimum: Pengguna menetapkan jumlah periode kembali ke periode dasar, ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan ( PBF). A.10.4 Mean Absolute Deviation Calculation MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metode 9 - Weighted Moving Average Metode Moved Moving Average (WMA) mirip dengan Metode 4, Moving Average (MA). Namun, dengan Weighted Moving Average Anda dapat menetapkan bobot yang tidak sama dengan data historis. Metode ini menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Data yang lebih baru biasanya diberi bobot lebih besar dari data yang lebih tua, jadi ini membuat WMA lebih responsif terhadap pergeseran di tingkat penjualan. Namun, perkiraan bias dan kesalahan sistematis masih terjadi bila sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. N jumlah periode sejarah penjualan yang akan digunakan dalam perhitungan perkiraan. Sebagai contoh, tentukan n 3 pada opsi pemrosesan 9a untuk menggunakan tiga periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Nilai yang besar untuk n (seperti 12) memerlukan lebih banyak riwayat penjualan. Ini menghasilkan perkiraan yang stabil, namun akan lambat untuk mengenali pergeseran tingkat penjualan. Di sisi lain, nilai kecil untuk n (seperti 3) akan merespons pergeseran tingkat penjualan dengan lebih cepat, namun ramalan dapat berfluktuasi secara luas sehingga produksi tidak dapat merespons variasi. Bobot ditugaskan untuk setiap periode data historis. Bobot yang ditugaskan harus berjumlah 1,00. Misalnya, ketika n3, tetapkan bobot 0,6, 0,3, dan 0,1, dengan data terbaru yang menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi perkiraan kinerja (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13.5 A.12 Metode 10 - Linear Smoothing Metode ini serupa dengan Metode 9, Weighted Moving Average (WMA). Namun, alih-alih menugaskan bobot secara sewenang-wenang ke data historis, formula digunakan untuk menetapkan bobot yang menurun secara linier dan jumlahnya menjadi 1,00. Metode ini kemudian menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Seperti halnya semua teknik peramalan rata-rata bergerak linear, prakiraan bias dan kesalahan sistematis terjadi ketika sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. N jumlah periode sejarah penjualan yang akan digunakan dalam perhitungan perkiraan. Ini ditentukan dalam opsi pemrosesan 10a. Sebagai contoh, tentukan n 3 pada opsi pemrosesan 10b untuk menggunakan tiga periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Sistem akan secara otomatis menetapkan bobot data historis yang menurun secara linear dan jumlahnya menjadi 1,00. Misalnya, ketika n3, sistem akan menetapkan bobot 0,5, 0,3333, dan 0,1, dengan data terbaru yang menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi perkiraan kinerja (PBF). A.12.1 Prakiraan Perhitungan Jumlah periode untuk dimasukkan ke dalam rata-rata smoothing (opsi pemrosesan 10a) 3 dalam contoh ini Rasio untuk satu periode sebelum 3 (n2 n) 2 3 (32 3) 2 36 0,5 Rasio untuk dua periode sebelumnya 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Rasio untuk tiga periode sebelum 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Ramalan bulan Januari: 137 0,5 119 13 114 16 127,16 atau 127 Februari perkiraan: 127 0,5 137 13 119 16 129 perkiraan Maret: 129 0.5 127 13 137 16 129.666 atau 130 A.12.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2004 129 16 140 26 131 36 133.6666 November 2004 penjualan 140 16 131 26 114 36 124 Desember 2004 penjualan 131 16 114 26 119 36 119.3333 A.12.3 Persen Perhitungan Akurasi POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Perhitungan Deviasi Absolut Mutual MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metode 11 - Exponential Smoothing Metode ini mirip dengan Metode 10, Linear Smoothing. Dalam Linear Smoothing, sistem memberikan bobot pada data historis yang menurun secara linear. Dalam eksponensial smoothing, sistem memberikan bobot yang secara eksponensial membusuk. Persamaan peramalan eksponensial eksponensial adalah: Ramalan (Penjualan Aktual Sebelumnya) (1 -a) Prakiraan sebelumnya Prakiraan adalah rata-rata tertimbang dari penjualan aktual dari periode sebelumnya dan perkiraan dari periode sebelumnya. A adalah bobot yang diterapkan pada penjualan aktual untuk periode sebelumnya. (1 -a) adalah bobot yang diterapkan pada ramalan untuk periode sebelumnya. Nilai yang valid berkisar antara 0 sampai 1, dan biasanya turun antara 0,1 dan 0,4. Jumlah bobotnya adalah 1,00. A (1 -a) 1 Anda harus menetapkan nilai untuk konstanta pemulusan, a. Jika Anda tidak menetapkan nilai untuk konstanta pemulusan, sistem menghitung nilai yang diasumsikan berdasarkan jumlah periode riwayat penjualan yang ditentukan dalam opsi pemrosesan 11a. Sebuah konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai yang valid berkisar antara 0 sampai 1. n kisaran data riwayat penjualan yang disertakan dalam perhitungan. Umumnya satu tahun data penjualan data sudah cukup untuk memperkirakan tingkat penjualan secara umum. Untuk contoh ini, nilai kecil untuk n (n 3) dipilih untuk mengurangi perhitungan manual yang diperlukan untuk memverifikasi hasilnya. Perataan eksponensial dapat menghasilkan perkiraan berdasarkan sedikit data historis. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi perkiraan kinerja (PBF). A.13.1 Prakiraan Perhitungan Jumlah periode yang harus disertakan dalam rata-rata pemulusan (opsi pemrosesan 11a) 3, dan faktor alfa (opsi pemrosesan 11b) kosong pada contoh ini merupakan faktor untuk data penjualan tertua 2 (11), atau 1 bila alfa ditentukan Faktor untuk data penjualan tertua ke 2 (12), atau alfa saat alfa ditetapkan sebagai faktor untuk data penjualan tertua ke-3 (2), atau alfa saat alpha ditetapkan sebagai faktor untuk data penjualan terakhir 2 (1n) , Atau alpha ketika alpha ditentukan November Sm. Rata-rata A (Oktober Aktual) (1 - a) Oktober Sm. Rata-rata 1 114 0 0 114 Desember Sm. Rata-rata A (November Aktual) (1 - a) November Sm. Rata-rata 23 119 13 114 117.3333 Prakiraan bulan Januari (Desember Aktual) (1 - a) Desember Sm. Rata-rata 24 137 24 117.3333 127.16665 atau 127 Februari Prakiraan Prakiraan Januari 127 Maret Prakiraan Prakiraan Januari 127 A.13.2 Perhitungan Prakiraan Simulasi Juli 2004 Sm. Rata-rata 22 129 129 Agustus Sm. Rata-rata 23 140 13 129 136.3333 September Sm. Rata-rata 24 131 24 136.3333 133.6666 Oktober, 2004 penjualan Sep Sm. Rata-rata 133.6666 Agustus 2004 Sm. Rata-rata 22 140 140 September Sm. Rata-rata 23 131 13 140 134 Oktober Sm. Rata-rata 24 114 24 134 124 November, 2004 penjualan Sep Sm. Rata-rata 124 September 2004 Sm. Rata-rata 22 131 131 Oktober Sm. Rata-rata 23 114 13 131 119.6666 November Sm. Rata-rata 24 119 24 119.6666 119.3333 Desember 2004 penjualan Sep Sm. Rata-rata 119.3333 A.13.3 Persen Perhitungan Akurasi POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Perhitungan Deviasi Absolut Mutual MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metode 12 - Eksploitasi Eksponensial Dengan Trend dan Seasonality Metode ini mirip dengan Metode 11, Eksponensial Smoothing dengan rata-rata penghalusan dihitung. Namun, Metode 12 juga mencakup sebuah istilah dalam persamaan peramalan untuk menghitung tren yang merapikan. Perkiraan tersebut terdiri dari rata-rata merapikan yang disesuaikan dengan tren linier. Bila ditentukan dalam opsi pengolahan, ramalan juga disesuaikan untuk musiman. Sebuah konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai yang valid untuk rentang alfa dari 0 sampai 1. b konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk komponen tren perkiraan. Nilai yang valid untuk rentang beta dari 0 sampai 1. Apakah indeks musiman diterapkan pada perkiraan a dan b adalah independen satu sama lain. Mereka tidak perlu menambahkan ke 1.0. Riwayat penjualan minimum wajib: dua tahun ditambah jumlah periode waktu yang dibutuhkan untuk mengevaluasi kinerja perkiraan (PBF). Metode 12 menggunakan dua persamaan pemulusan eksponensial dan satu rata-rata sederhana untuk menghitung rata-rata merapikan, tren merapikan, dan faktor musiman rata-rata sederhana. A.14.1 Prakiraan Perhitungan A) Rata-rata MAD yang merata secara eksponensial (122,81 - 114 133,14 - 119 135,33 - 137) 3 8.2 A.15 Mengevaluasi Prakiraan Anda dapat memilih metode peramalan untuk menghasilkan sebanyak dua belas perkiraan untuk setiap produk. Setiap metode peramalan mungkin akan menghasilkan proyeksi yang sedikit berbeda. Bila ribuan produk diperkirakan, tidak praktis membuat keputusan subyektif mengenai prakiraan mana yang akan digunakan dalam rencana Anda untuk setiap produk. Sistem secara otomatis mengevaluasi kinerja masing-masing metode peramalan yang Anda pilih, dan untuk setiap perkiraan produk. Anda dapat memilih antara dua kriteria kinerja, Mean Absolute Deviation (MAD) dan Persen Ketelitian (POA). MAD adalah ukuran kesalahan perkiraan. POA adalah ukuran prakiraan bias. Kedua teknik evaluasi kinerja ini memerlukan data riwayat penjualan aktual untuk jangka waktu yang ditentukan pengguna. Periode sejarah terakhir ini disebut periode holdout atau periode yang paling sesuai (PBF). Untuk mengukur kinerja metode peramalan, gunakan rumus perkiraan untuk mensimulasikan perkiraan periode penyimpanan historis. Biasanya akan ada perbedaan antara data penjualan aktual dan perkiraan simulasi untuk periode holdout. Bila beberapa metode perkiraan dipilih, proses yang sama terjadi untuk setiap metode. Beberapa prakiraan dihitung untuk periode holdout, dan dibandingkan dengan riwayat penjualan yang diketahui untuk periode waktu yang sama. Metode peramalan yang menghasilkan kecocokan terbaik (paling sesuai) antara perkiraan dan penjualan aktual selama periode holdout direkomendasikan untuk digunakan dalam rencana Anda. Rekomendasi ini khusus untuk setiap produk, dan mungkin berubah dari satu generasi perkiraan ke yang berikutnya. A.16 Mean Absolute Deviation (MAD) MAD adalah mean (atau rata-rata) dari nilai absolut (atau besarnya) dari penyimpangan (atau kesalahan) antara data aktual dan perkiraan. MAD adalah ukuran dari besaran rata-rata kesalahan yang diharapkan, dengan metode peramalan dan riwayat data. Karena nilai absolut yang digunakan dalam perhitungan, kesalahan positif tidak membatalkan kesalahan negatif. Saat membandingkan beberapa metode peramalan, yang memiliki MAD terkecil telah terbukti paling andal untuk produk tersebut selama periode holdout tersebut. Bila perkiraan tidak bias dan kesalahan terdistribusi normal, ada hubungan matematis sederhana antara MAD dan dua ukuran distribusi umum lainnya, standar deviasi dan Mean Squared Error: A.16.1 Persen Ketelitian (POA) Persen Ketelitian (POA) adalah Ukuran prakiraan bias. Bila prakiraan konsisten terlalu tinggi, persediaan terakumulasi dan biaya persediaan meningkat. Bila perkiraan secara konsisten dua rendah, persediaan dikonsumsi dan penurunan layanan pelanggan. Sebuah perkiraan yang 10 unit terlalu rendah, maka 8 unit terlalu tinggi, maka 2 unit terlalu tinggi, akan menjadi perkiraan yang tidak bias. Kesalahan positif 10 dibatalkan oleh kesalahan negatif 8 dan 2. Kesalahan Aktual - Ramalan Bila produk dapat disimpan dalam persediaan, dan bila perkiraan tidak bias, sejumlah kecil stok pengaman dapat digunakan untuk menyangga kesalahan. Dalam situasi ini, tidak begitu penting untuk menghilangkan kesalahan perkiraan karena menghasilkan perkiraan yang tidak bias. Namun dalam industri jasa, situasi di atas akan dipandang sebagai tiga kesalahan. Layanan akan kekurangan pada periode pertama, kemudian overstaffed untuk dua periode berikutnya. Dalam layanan, besarnya kesalahan perkiraan biasanya lebih penting daripada perkiraan bias. Penjumlahan selama periode holdout memungkinkan kesalahan positif untuk membatalkan kesalahan negatif. Bila total penjualan aktual melebihi total perkiraan penjualan, rasionya lebih besar dari 100. Tentu saja, tidak mungkin lebih dari 100 akurat. Bila perkiraan tidak bias, rasio POA akan menjadi 100. Oleh karena itu, lebih diharapkan 95 akurat daripada akurat. Kriteria POA memilih metode peramalan yang memiliki rasio POA paling mendekati 100. Skrip pada halaman ini akan meningkatkan navigasi konten, namun tidak mengubah konten dengan cara apapun.3 Memahami Tingkat dan Metode Perkiraan Anda dapat menghasilkan prakiraan detail (item tunggal) Dan ringkasan (produk) prakiraan yang mencerminkan pola permintaan produk. Sistem ini menganalisis penjualan masa lalu untuk menghitung perkiraan dengan menggunakan 12 metode peramalan. Perkiraan tersebut mencakup informasi detail pada tingkat item dan informasi tingkat tinggi tentang cabang atau perusahaan secara keseluruhan. 3.1 Kriteria Evaluasi Kinerja Perkiraan Tergantung pada pemilihan opsi pemrosesan dan tren dan pola dalam data penjualan, beberapa metode peramalan berperforma lebih baik daripada yang lain untuk kumpulan data historis tertentu. Metode peramalan yang sesuai untuk satu produk mungkin tidak sesuai untuk produk lain. Anda mungkin menemukan bahwa metode peramalan yang memberikan hasil bagus pada satu tahap siklus hidup produk tetap sesuai sepanjang keseluruhan siklus hidup. Anda dapat memilih antara dua metode untuk mengevaluasi kinerja metode peramalan saat ini: Persentase akurasi (POA). Mean absolute deviation (MAD). Kedua metode evaluasi kinerja ini memerlukan data penjualan historis untuk periode yang Anda tentukan. Periode ini disebut periode holdout atau periode yang paling sesuai. Data dalam periode ini digunakan sebagai dasar untuk merekomendasikan metode peramalan yang akan digunakan dalam membuat perkiraan proyeksi berikutnya. Rekomendasi ini khusus untuk setiap produk dan dapat berubah dari satu perkiraan generasi ke generasi berikutnya. 3.1.1 Fit Terbaik Sistem merekomendasikan ramalan yang paling sesuai dengan menerapkan metode peramalan yang dipilih ke riwayat pesanan penjualan terakhir dan membandingkan perkiraan simulasi dengan sejarah sebenarnya. Bila Anda menghasilkan ramalan yang paling sesuai, sistem ini membandingkan riwayat penjualan aktual dengan perkiraan untuk jangka waktu tertentu dan menghitung seberapa akurat setiap metode peramalan yang berbeda memprediksi penjualan. Kemudian sistem merekomendasikan ramalan paling akurat sebagai yang paling sesuai. Grafik ini menggambarkan prakiraan terbaik: Gambar 3-1 Ramalan sesuai terbaik Sistem menggunakan urutan langkah-langkah ini untuk menentukan kecocokan terbaik: Gunakan setiap metode yang ditentukan untuk mensimulasikan perkiraan periode holdout. Bandingkan penjualan aktual dengan perkiraan simulasi untuk periode holdout. Hitung POA atau MAD untuk menentukan metode peramalan mana yang paling sesuai dengan penjualan aktual sebelumnya. Sistem ini menggunakan POA atau MAD, berdasarkan pilihan pemrosesan yang Anda pilih. Merekomendasikan ramalan yang paling sesuai dengan POA yang paling dekat dengan 100 persen (di atas atau di bawah) atau MAD yang paling dekat dengan nol. 3.2 Metode Peramalan JD Edwards EnterpriseOne Forecast Management menggunakan 12 metode untuk peramalan kuantitatif dan menunjukkan metode mana yang paling sesuai untuk situasi peramalan. Bagian ini membahas: Metode 1: Persen sepanjang tahun lalu. Metode 2: Perhitungan Persentase Lebih dari Tahun Lalu. Metode 3: Tahun Terakhir sampai Tahun Ini. Metode 4: Moving Average. Metode 5: Pendekatan Linier. Metode 6: Regresi Kuadrat Terkecil. Metode 7: Pendekatan Gelar Kedua. Metode 8: Metode Fleksibel. Metode 9: Rata-rata Bergerak Tertimbang. Metode 10: Linear Smoothing. Metode 11: Eksponensial Smoothing. Metode 12: Exponential Smoothing dengan Trend dan Seasonality. Tentukan metode yang ingin Anda gunakan dalam opsi pemrosesan untuk program Prakiraan Generasi (R34650). Sebagian besar metode ini memberikan kontrol terbatas. Misalnya, bobot yang ditempatkan pada data historis terkini atau rentang tanggal data historis yang digunakan dalam perhitungan dapat ditentukan oleh Anda. Contoh dalam panduan ini menunjukkan prosedur perhitungan untuk masing-masing metode peramalan yang ada, dengan data set identik. Contoh metode dalam panduan menggunakan sebagian atau seluruh kumpulan data ini, yaitu data historis dari dua tahun terakhir. Proyeksi proyeksi masuk ke tahun depan. Data penjualan data ini stabil dengan kenaikan musiman kecil di bulan Juli dan Desember. Pola ini merupakan karakteristik dari produk dewasa yang mungkin mendekati keusangan. 3.2.1 Metode 1: Persen Selama Tahun Terakhir Metode ini menggunakan rumus Persen Selama Tahun Terakhir untuk melipatgandakan setiap periode perkiraan dengan persentase kenaikan atau penurunan yang ditentukan. Untuk meramalkan permintaan, metode ini memerlukan jumlah periode yang paling sesuai ditambah satu tahun riwayat penjualan. Metode ini berguna untuk meramalkan permintaan barang musiman dengan pertumbuhan atau penurunan. 3.2.1.1 Contoh: Metode 1: Persen Selama Tahun Terakhir Rumus Persen Selama Tahun Lalu mengalikan data penjualan dari tahun sebelumnya dengan faktor yang Anda tentukan dan kemudian proyek yang dihasilkan selama tahun depan. Metode ini mungkin berguna dalam penganggaran untuk mensimulasikan pengaruh tingkat pertumbuhan tertentu atau ketika riwayat penjualan memiliki komponen musiman yang signifikan. Perkiraan ramalan: Faktor perkalian. Misalnya, tentukan 110 dalam opsi pemrosesan untuk meningkatkan data riwayat penjualan tahun sebelumnya sebesar 10 persen. Diperlukan riwayat penjualan: Satu tahun untuk menghitung perkiraan, ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai) yang Anda tentukan. Tabel ini adalah sejarah yang digunakan dalam perhitungan ramalan: Ramalan Februari sama dengan 117 kali 1.1 128,7 dibulatkan menjadi 129. Prakiraan bulan Maret sama dengan 115 kali 1,1 126,5 dibulatkan menjadi 127. 3.2.2 Metode 2: Perhitungan Persen Selama Tahun Lalu Metode ini menggunakan Perhitungan yang Dihitung Formula Tahun Terakhir untuk membandingkan penjualan masa lalu periode tertentu dengan penjualan dari periode yang sama tahun sebelumnya. Sistem menentukan persentase kenaikan atau penurunan, dan kemudian mengalikan setiap periode dengan persentase untuk menentukan perkiraan. Untuk meramalkan permintaan, metode ini membutuhkan jumlah periode riwayat pesanan penjualan ditambah satu tahun riwayat penjualan. Metode ini berguna untuk meramalkan permintaan jangka pendek untuk item musiman dengan pertumbuhan atau penurunan. 3.2.2.1 Contoh: Metode 2: Perhitungan Persentase Selama Tahun Lalu Rumusan Perhitungan Selama Rumus Terakhir mengalikan data penjualan dari tahun sebelumnya dengan faktor yang dihitung oleh sistem, dan kemudian proyek tersebut akan menghasilkan tahun depan. Metode ini mungkin berguna dalam memproyeksikan pengaruh perluasan tingkat pertumbuhan baru-baru ini untuk produk ke tahun depan sambil mempertahankan pola musiman yang ada dalam riwayat penjualan. Perkiraan spesifikasi: Rentang sejarah penjualan yang digunakan dalam menghitung tingkat pertumbuhan. Misalnya, tentukan n sama dengan 4 dalam opsi pemrosesan untuk membandingkan riwayat penjualan selama empat periode terakhir sampai empat periode yang sama tahun sebelumnya. Gunakan rasio yang dihitung untuk membuat proyeksi untuk tahun depan. Diperlukan riwayat penjualan: Satu tahun untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan, dengan perkiraan n 4: Februari sama dengan 117 kali 0,9766 114,26 dibulatkan menjadi 114. Prakiraan bulan Maret sama dengan 115 kali 0,9766 112,31 dibulatkan menjadi 112. 3.2.3 Metode 3: Tahun lalu sampai tahun ini Metode ini menggunakan Penjualan tahun lalu untuk ramalan tahun depan. Untuk meramalkan permintaan, metode ini membutuhkan jumlah periode yang paling sesuai ditambah satu tahun sejarah pesanan penjualan. Metode ini berguna untuk meramalkan permintaan produk dewasa dengan tingkat permintaan atau permintaan musiman tanpa tren. 3.2.3.1 Contoh: Metode 3: Tahun Lalu sampai Tahun Ini Formula Tahun Lalu sampai Tahun Ini mengcopy data penjualan dari tahun sebelumnya sampai tahun depan. Metode ini mungkin berguna dalam penganggaran untuk mensimulasikan penjualan pada tingkat sekarang. Produknya sudah matang dan tidak memiliki tren dalam jangka panjang, namun pola permintaan musiman yang signifikan mungkin ada. Perkiraan spesifikasi: Tidak ada. Diperlukan riwayat penjualan: Satu tahun untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: Prakiraan Januari sama dengan bulan Januari tahun lalu dengan perkiraan nilai sebesar 128. Prakiraan Februari sama dengan bulan Februari tahun lalu dengan nilai perkiraan sebesar 117. Perkiraan Maret sama dengan bulan Maret tahun lalu dengan perkiraan nilai 115. 3.2.4 Metode 4: Moving Average Metode ini menggunakan rumus Moving Average rata-rata jumlah periode yang ditentukan untuk diproyeksikan pada periode berikutnya. Anda harus menghitung ulangnya sesering mungkin (bulanan, atau setidaknya tiga bulanan) untuk mencerminkan tingkat permintaan yang berubah. Untuk meramalkan permintaan, metode ini membutuhkan jumlah periode yang paling sesuai dengan jumlah periode sejarah pesanan penjualan. Metode ini berguna untuk meramalkan permintaan terhadap produk dewasa tanpa tren. 3.2.4.1 Contoh: Metode 4: Moving Average Moving Average (MA) adalah metode populer untuk merata-ratakan hasil dari riwayat penjualan terakhir untuk menentukan proyeksi untuk jangka pendek. Metode perkiraan MA tertinggal dari tren. Prakiraan bias dan kesalahan sistematis terjadi ketika sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk yang berada dalam tahap pertumbuhan atau keusangan dari siklus hidup. Perkiraan spesifikasi: n sama dengan jumlah periode riwayat penjualan yang digunakan dalam perhitungan perkiraan. Sebagai contoh, tentukan n 4 dalam opsi pemrosesan untuk menggunakan empat periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Nilai yang besar untuk n (seperti 12) memerlukan lebih banyak riwayat penjualan. Ini menghasilkan perkiraan yang stabil, namun lamban untuk mengenali pergeseran tingkat penjualan. Sebaliknya, nilai kecil untuk n (seperti 3) lebih cepat merespons perubahan tingkat penjualan, namun perkiraan tersebut mungkin berfluktuasi secara luas sehingga produksi tidak dapat merespons variasinya. Riwayat penjualan yang disyaratkan: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi perkiraan kinerja (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: perkiraan Februari sama dengan (114 119 137 125) 4 123.75 dibulatkan menjadi 124. Prakiraan bulan Maret sama dengan (119 137 125 124) 4 126,25 dibulatkan menjadi 126. 3.2.5 Metode 5: Pendekatan Linier Metode ini Menggunakan rumus Pendekatan Linier untuk menghitung tren dari jumlah periode sejarah pesanan penjualan dan memproyeksikan tren ini ke perkiraan. Anda harus menghitung ulang tren setiap bulan untuk mendeteksi perubahan tren. Metode ini memerlukan jumlah periode yang paling sesuai dan jumlah periode riwayat penjualan yang ditentukan. Metode ini berguna untuk meramalkan permintaan akan produk baru, atau produk dengan tren positif atau negatif yang konsisten yang bukan karena fluktuasi musiman. 3.2.5.1 Contoh: Metode 5: Pendekatan Linier Linear Approximation menghitung tren yang didasarkan pada dua titik data penjualan historis. Kedua titik tersebut mendefinisikan garis tren lurus yang diproyeksikan ke masa depan. Gunakan metode ini dengan hati-hati karena ramalan jarak jauh diimbangi oleh perubahan kecil hanya dalam dua titik data. Perkiraan spesifikasi: n sama dengan titik data dalam sejarah penjualan yang dibandingkan dengan titik data terkini untuk mengidentifikasi tren. Misalnya, tentukan n 4 untuk menggunakan selisih antara Desember (data terbaru) dan Agustus (empat periode sebelum Desember) sebagai dasar perhitungan tren. Riwayat penjualan wajib minimum: n ditambah 1 ditambah dengan jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan ramalan: ramalan Januari Desember tahun lalu 1 (Tren) yang sama dengan 137 (1 kali 2) 139. Februari meramalkan Desember tahun lalu 1 (Tren) yang sama dengan 137 (2 kali 2) 141. Maret meramalkan Desember tahun lalu 1 (Tren) yang sama dengan 137 (3 kali 2) 143. 3.2.6 Metode 6: Regresi Kuadrat Terkecil Metode Regresi Kuadrat Terkecil (LSR) menghasilkan persamaan yang menggambarkan hubungan garis lurus antara data penjualan historis Dan berlalunya waktu. LSR sesuai dengan garis pada rentang data yang dipilih sehingga jumlah kuadrat perbedaan antara titik data penjualan aktual dan garis regresi diminimalkan. Perkiraan tersebut merupakan proyeksi dari garis lurus ini ke masa depan. Metode ini memerlukan riwayat data penjualan untuk periode yang diwakili oleh jumlah periode yang paling sesuai dan jumlah periode data historis yang ditentukan. Persyaratan minimum adalah dua titik data historis. Metode ini berguna untuk meramalkan permintaan ketika terjadi trend linear pada data. 3.2.6.1 Contoh: Metode 6: regresi linier regresi kuadrat terkecil, atau regresi kuadrat terkecil (LSR), adalah metode yang paling populer untuk mengidentifikasi tren linier dalam data penjualan historis. Metode ini menghitung nilai a dan b yang akan digunakan dalam rumus: Persamaan ini menggambarkan garis lurus, dimana Y mewakili penjualan dan X mewakili waktu. Regresi linier lambat untuk mengenali titik balik dan pergeseran fungsi fungsi dalam permintaan. Regresi linier sesuai dengan garis lurus ke data, bahkan saat data musiman atau lebih baik dijelaskan oleh kurva. Bila data riwayat penjualan mengikuti kurva atau memiliki pola musiman yang kuat, prakiraan bias dan kesalahan sistematis terjadi. Perkiraan spesifikasi: n sama dengan periode sejarah penjualan yang akan digunakan dalam menghitung nilai a dan b. Sebagai contoh, tentukan n 4 untuk menggunakan sejarah dari bulan September sampai Desember sebagai dasar perhitungannya. Bila data tersedia, n yang lebih besar (seperti n 24) biasanya akan digunakan. LSR mendefinisikan sebuah garis untuk sedikitnya dua titik data. Untuk contoh ini, nilai kecil untuk n (n 4) dipilih untuk mengurangi perhitungan manual yang diperlukan untuk memverifikasi hasilnya. Riwayat penjualan wajib minimum: n periode ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: Prakiraan bulan Maret sama dengan 119,5 (7 kali 2,3) 135,6 dibulatkan menjadi 136. 3.2.7 Metode 7: Pendekatan Tingkat Dua Untuk memproyeksikan ramalan, metode ini menggunakan rumus Pendekatan Derajat Kelipatan untuk merencanakan kurva Yang didasarkan pada jumlah periode riwayat penjualan. Metode ini membutuhkan jumlah periode yang paling sesuai ditambah jumlah periode sejarah penjualan tiga kali lipat. Metode ini tidak berguna untuk meramalkan permintaan untuk jangka waktu yang panjang. 3.2.7.1 Contoh: Metode 7: Pendekatan Derajat Kelima Regresi Linier menentukan nilai a dan b dalam rumus ramalan Y a b X dengan tujuan untuk menyesuaikan garis lurus dengan data riwayat penjualan. Pendekatan Gelar Kedua serupa, namun metode ini menentukan nilai a, b, dan c dalam rumus perkiraan ini: Y a b X c X 2 Tujuan metode ini adalah menyesuaikan kurva dengan data riwayat penjualan. Metode ini berguna bila suatu produk berada dalam masa transisi antara tahap siklus hidup. Misalnya, ketika produk baru bergerak dari pengenalan tahap pertumbuhan, tren penjualan mungkin akan meningkat. Karena istilah orde kedua, ramalan dapat dengan cepat mendekati tak terhingga atau turun menjadi nol (tergantung pada apakah koefisien c positif atau negatif). Metode ini berguna hanya dalam jangka pendek. Perkiraan spesifikasi: rumus menemukan a, b, dan c agar sesuai dengan kurva dengan tepat tiga titik. Anda tentukan n, jumlah periode waktu data untuk menumpuk ke masing-masing dari tiga titik. Dalam contoh ini, n 3. Data penjualan aktual untuk bulan April sampai Juni digabungkan menjadi poin pertama, Q1. Juli sampai September ditambahkan bersama untuk menciptakan Q2, dan Oktober sampai Desember ke Q3. Kurva dipasang pada tiga nilai Q1, Q2, dan Q3. Riwayat penjualan yang disyaratkan: 3 kali n periode untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mei) (Jun) yang sama dengan 125 122 137 384 Q2 (Jul) (Agustus) (Sep) yang sama dengan 140 129 131 400 Q3 (Okt) (Nov) (Des) yang sama dengan 114 119 137 370 Langkah selanjutnya melibatkan penghitungan ketiga koefisien a, b, dan c yang akan digunakan dalam rumus peramalan Y ab X c X 2. Q1, Q2, dan Q3 disajikan pada grafik, di mana waktu diplot pada sumbu horizontal. Q1 mewakili total penjualan historis untuk bulan April, Mei, dan Juni dan diplot pada X 1 Q2 sesuai dengan bulan Juli sampai September Q3 sesuai dengan bulan Oktober sampai Desember dan Q4 yang merupakan Januari sampai Maret. Grafik ini menggambarkan perencanaan Q1, Q2, Q3, dan Q4 untuk aproksimasi tingkat kedua: Gambar 3-2 Merencanakan Q1, Q2, Q3, dan Q4 untuk pendekatan tingkat dua Tiga persamaan menggambarkan tiga titik pada grafik: (1) Q1 A bX cX 2 dimana X 1 (Q1 abc) (2) Q2 a bX cX 2 dimana X 2 (Q2 a 2b 4c) (3) Q3 a bX cX 2 dimana X 3 (Q3 a 3b 9c) Selesaikan tiga persamaan secara simultan Untuk menemukan b, a, dan c: Kurangi persamaan 1 (1) dari persamaan 2 (2) dan atasi untuk b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ganti persamaan ini untuk B ke persamaan (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Akhirnya, ganti persamaan ini untuk a dan b ke persamaan (1): (1) Q3 ndash (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 Metode Pendekatan Derajat Gelar Kedua menghitung a, b, dan c sebagai berikut: Q3 ndash 3 (Q2 ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 nda Sh 384) ndash (3 kali ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 Ini adalah perhitungan perkiraan aproksimasi tingkat kedua: Y a bX cX 2 322 85X (ndash23) (X 2) Bila X 4, Q4 322 340 ndash 368 294. Perkiraan sama dengan 294 3 98 per periode. Bila X 5, Q5 322 425 ndash 575 172. Prakiraan sama dengan 172 3 58,33 dibulatkan menjadi 57 per periode. Bila X 6, Q6 322 510 ndash 828 4. Prakiraan sama dengan 4 3 1,33 dibulatkan menjadi 1 per periode. Ini adalah ramalan untuk tahun depan, Tahun Lalu sampai Tahun Ini: 3.2.8 Metode 8: Metode Fleksibel Dengan metode ini Anda dapat memilih jumlah periode penjualan terbaik yang paling sesuai yang dimulai n bulan sebelum tanggal mulai perkiraan, dan untuk Menerapkan persentase kenaikan atau penurunan faktor perkalian untuk memodifikasi perkiraan. Metode ini mirip dengan Metode 1, Persen Sepanjang Tahun Terakhir, kecuali bahwa Anda dapat menentukan jumlah periode yang Anda gunakan sebagai basis. Bergantung pada pilihan yang Anda pilih sebagai n, metode ini memerlukan waktu yang paling sesuai dengan jumlah periode data penjualan yang ditunjukkan. Metode ini berguna untuk meramalkan permintaan akan tren yang direncanakan. 3.2.8.1 Contoh: Metode 8: Metode Fleksibel Metode Fleksibel (Persen Lebih dari 10 Bulan Sebelumnya) serupa dengan Metode 1, Persen Sepanjang Tahun Lalu. Kedua metode tersebut melipatgandakan data penjualan dari periode waktu sebelumnya dengan faktor yang ditentukan oleh Anda, dan kemudian memproyeksikan hasilnya ke masa depan. Dalam metode Percent Over Last Year, proyeksi didasarkan pada data dari periode waktu yang sama tahun sebelumnya. Anda juga dapat menggunakan Metode Fleksibel untuk menentukan jangka waktu, selain periode yang sama tahun lalu, untuk digunakan sebagai dasar perhitungan. Faktor perkalian Misalnya, tentukan 110 dalam opsi pemrosesan untuk meningkatkan data riwayat penjualan sebelumnya sebesar 10 persen. Periode dasar Sebagai contoh, n 4 menyebabkan perkiraan pertama berdasarkan data penjualan pada bulan September tahun lalu. Riwayat penjualan wajib minimum: jumlah periode kembali ke periode dasar ditambah dengan jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: 3.2.9 Metode 9: Rata-rata Bergerak Rata-rata Rumus Rata-rata Bergerak Rata-rata serupa dengan Metode 4, Rumus Bergerak Rata-rata, karena rata-rata mencatat riwayat penjualan bulan sebelumnya untuk memproyeksikan riwayat penjualan bulan berikutnya. Namun, dengan formula ini Anda dapat menetapkan bobot untuk masing-masing periode sebelumnya. Metode ini membutuhkan jumlah periode tertimbang yang dipilih ditambah jumlah periode data yang paling sesuai. Mirip dengan Moving Average, metode ini tertinggal dari tren permintaan, jadi metode ini tidak disarankan untuk produk dengan tren atau musiman yang kuat. Metode ini berguna untuk meramalkan permintaan terhadap produk dewasa dengan permintaan yang relatif tinggi. 3.2.9.1 Contoh: Metode 9: Rata-rata Bergerak Rata-rata Metode Weighted Moving Average (WMA) mirip dengan Metode 4, Moving Average (MA). Namun, Anda dapat menetapkan bobot yang tidak sama dengan data historis saat menggunakan WMA. Metode ini menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Data yang lebih baru biasanya diberi bobot lebih besar dari data yang lebih tua, jadi WMA lebih responsif terhadap perubahan tingkat penjualan. Namun, prakiraan bias dan kesalahan sistematis terjadi ketika sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. Jumlah periode riwayat penjualan (n) untuk digunakan dalam perhitungan perkiraan. Sebagai contoh, tentukan n 4 dalam opsi pemrosesan untuk menggunakan empat periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Nilai yang besar untuk n (seperti 12) memerlukan lebih banyak riwayat penjualan. Nilai tersebut menghasilkan perkiraan yang stabil, namun lambat untuk mengenali pergeseran tingkat penjualan. Sebaliknya, nilai kecil untuk n (seperti 3) merespons lebih cepat terhadap pergeseran tingkat penjualan, namun ramalannya mungkin berfluktuasi secara luas sehingga produksi tidak dapat merespons variasinya. Jumlah periode untuk opsi pemrosesan rdquo14 - periode untuk includerdquo tidak boleh melebihi 12 bulan. Bobot yang ditugaskan pada masing-masing periode data historis. Bobot yang ditugaskan harus berjumlah 1,00. Misalnya, ketika n 4, tetapkan bobot 0,50, 0,25, 0,15, dan 0,10 dengan data terbaru yang menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: Ramalan Januari sama dengan (131 kali 0,10) (114 kali 0,15) (119 kali 0,25) (137 kali 0,50) (0,10 0,15 0,25 0,50) 128,45 dibulatkan menjadi 128. Prakiraan Februari sama dengan (114 kali 0,10) (137 kali 0,15) (128 kali 0,50) 1 127,5 dibulatkan ke 128. Prakiraan bulan Maret sama dengan 119 kali 0,10 (137 kali 0,15) (128 kali 0,25) (128 kali 0,50) 1 128,45 dibulatkan ke 128. 3.2.10 Metode 10: Linear Smoothing Metode ini menghitung rata-rata tertimbang data penjualan terakhir. Dalam perhitungan, metode ini menggunakan jumlah periode sejarah pesanan penjualan (dari 1 sampai 12) yang ditunjukkan dalam opsi pemrosesan. Sistem ini menggunakan kemajuan matematis untuk menimbang data dalam rentang dari yang pertama (bobot paling rendah) sampai akhir (berat paling banyak). Kemudian sistem memproyeksikan informasi ini ke setiap periode dalam perkiraan. Metode ini membutuhkan waktu yang paling sesuai untuk bulan dan riwayat penjualan untuk jumlah periode yang ditentukan dalam opsi pemrosesan. 3.2.10.1 Contoh: Metode 10: Linear Smoothing Metode ini mirip dengan Metode 9, WMA. Namun, alih-alih menugaskan bobot secara sewenang-wenang ke data historis, formula digunakan untuk menetapkan bobot yang menurun secara linier dan jumlahnya menjadi 1,00. Metode ini kemudian menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Seperti semua teknik peramalan rata-rata bergerak linear, prakiraan bias dan kesalahan sistematis terjadi saat sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. N sama dengan jumlah periode sejarah penjualan yang digunakan dalam perhitungan perkiraan. Misalnya, tentukan n sama dengan 4 dalam opsi pemrosesan untuk menggunakan empat periode terbaru sebagai dasar proyeksi ke periode waktu berikutnya. Sistem secara otomatis memberikan bobot pada data historis yang menurun secara linear dan jumlahnya menjadi 1,00. Misalnya, bila n sama dengan 4, sistem menetapkan bobot 0,4, 0,3, 0,2, dan 0,1, dengan data terbaru yang menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: 3.2.11 Metode 11: Exponential Smoothing Metode ini menghitung rata-rata merapikan, yang menjadi perkiraan yang mewakili tingkat penjualan umum selama periode data historis yang dipilih. Metode ini memerlukan riwayat data penjualan untuk jangka waktu yang diwakili oleh jumlah periode yang paling sesuai ditambah jumlah periode data historis yang ditentukan. Persyaratan minimum adalah dua periode data historis. Metode ini berguna untuk meramalkan permintaan bila tidak ada trend linear dalam data. 3.2.11.1 Contoh: Metode 11: Exponential Smoothing Metode ini mirip dengan Metode 10, Linear Smoothing. Dalam Linear Smoothing, sistem memberikan bobot yang menurun secara linear ke data historis. Dalam Exponential Smoothing, sistem memberikan bobot yang secara eksponensial membusuk. Persamaan untuk peramalan Exponential Smoothing adalah: Forecast alpha (Penjualan Aktual Sebelumnya) (1 ndashalpha) (Prakiraan Sebelumnya) Prakiraan adalah rata-rata tertimbang dari penjualan aktual dari periode sebelumnya dan perkiraan dari periode sebelumnya. Alpha adalah bobot yang diaplikasikan pada penjualan aktual untuk periode sebelumnya. (1 ndash alpha) adalah bobot yang diterapkan pada ramalan untuk periode sebelumnya. Nilai untuk rentang alpha dari 0 sampai 1 dan biasanya turun antara 0,1 dan 0,4. Jumlah bobot adalah 1.00 (alpha (1 ndash alpha) 1). Anda harus menetapkan nilai untuk smoothing constant, alpha. Jika Anda tidak menetapkan nilai untuk konstanta pemulusan, sistem menghitung nilai asumsi yang didasarkan pada jumlah periode riwayat penjualan yang ditentukan dalam opsi pemrosesan. Alpha sama dengan konstanta pemulusan yang digunakan untuk menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai untuk rentang alfa dari 0 sampai 1. n sama dengan kisaran data riwayat penjualan yang disertakan dalam perhitungan. Umumnya, satu tahun data penjualan data sudah cukup untuk memperkirakan tingkat penjualan secara umum. Untuk contoh ini, nilai kecil untuk n (n 4) dipilih untuk mengurangi perhitungan manual yang diperlukan untuk memverifikasi hasilnya. Exponential Smoothing dapat menghasilkan perkiraan yang didasarkan pada sedikit data historis. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: 3.2.12 Metode 12: Exponential Smoothing dengan Trend dan Seasonality Metode ini menghitung tren, indeks musiman, dan rata-rata merapikan secara eksponensial dari riwayat penjualan. Sistem ini kemudian menerapkan proyeksi kecenderungan perkiraan dan penyesuaian indeks musiman. Metode ini memerlukan jumlah periode yang paling sesuai dan dua tahun data penjualan, dan berguna untuk item yang memiliki tren dan musiman dalam perkiraan. Anda bisa memasukkan faktor alpha dan beta, atau sistem menghitungnya. Faktor Alpha dan beta adalah konstanta pemulusan yang digunakan sistem untuk menghitung rata-rata smoothed untuk tingkat umum atau besarnya penjualan (alfa) dan komponen tren ramalan (beta). 3.2.12.1 Contoh: Metode 12: Exponential Smoothing dengan Trend dan Seasonality Metode ini mirip dengan Metode 11, Exponential Smoothing, dengan rata-rata penghalusan dihitung. Namun, Metode 12 juga mencakup sebuah istilah dalam persamaan peramalan untuk menghitung tren yang merapikan. Perkiraan tersebut terdiri dari rata-rata merapikan yang disesuaikan dengan tren linier. Bila ditentukan dalam opsi pengolahan, ramalan juga disesuaikan untuk musiman. Alfa sama dengan konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai untuk rentang alfa dari 0 sampai 1. Beta sama dengan konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk komponen tren perkiraan. Nilai untuk rentang beta dari 0 sampai 1. Apakah indeks musiman diterapkan pada perkiraan. Alpha dan beta tidak tergantung satu sama lain. Mereka tidak perlu jumlah untuk 1,0. Riwayat penjualan wajib minimum: Satu tahun ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Bila data historis dua tahun atau lebih tersedia, sistem tersebut menggunakan data dua tahun dalam perhitungan. Metode 12 menggunakan dua persamaan Eksponensial Smoothing dan satu rata-rata sederhana untuk menghitung rata-rata merapikan, tren merapikan, dan indeks musiman rata-rata sederhana. Rata-rata merapikan secara eksponensial: Tren eksponensial yang eksponensial: Indeks musiman rata-rata sederhana: Gambar 3-3 Indeks Rata-Rata Rata-Rata Rata-rata Perkiraan dihitung dengan menggunakan hasil dari tiga persamaan: L adalah panjang musim (L sama dengan 12 bulan atau 52 minggu). T adalah periode waktu sekarang. M adalah jumlah periode waktu ke masa depan perkiraan. S adalah faktor penyesuaian musiman multiplikatif yang diindeks pada jangka waktu yang sesuai. Tabel ini mencantumkan riwayat yang digunakan dalam perhitungan perkiraan: Bagian ini memberikan ikhtisar Evaluasi Prakiraan dan membahas: Anda dapat memilih metode peramalan untuk menghasilkan sebanyak 12 perkiraan untuk setiap produk. Setiap metode peramalan mungkin membuat proyeksi yang sedikit berbeda. Bila ribuan produk diperkirakan, keputusan subjektif tidak praktis mengenai perkiraan mana yang akan digunakan dalam rencana setiap produk. Sistem secara otomatis mengevaluasi kinerja setiap metode peramalan yang Anda pilih dan untuk setiap produk yang Anda ramalkan. Anda dapat memilih antara dua kriteria kinerja: MAD dan POA. MAD adalah ukuran kesalahan perkiraan. POA adalah ukuran prakiraan bias. Kedua teknik evaluasi kinerja ini memerlukan data riwayat penjualan aktual untuk periode yang ditentukan oleh Anda. Periode sejarah terkini yang digunakan untuk evaluasi disebut periode holdout atau periode yang paling sesuai. Untuk mengukur kinerja metode peramalan, sistem: Menggunakan rumus ramalan untuk mensimulasikan perkiraan periode penyimpanan historis. Membuat perbandingan antara data penjualan aktual dan perkiraan simulasi untuk periode holdout. Bila Anda memilih beberapa metode perkiraan, proses yang sama terjadi untuk setiap metode. Beberapa prakiraan dihitung untuk periode holdout dan dibandingkan dengan riwayat penjualan yang diketahui untuk periode yang sama. Metode peramalan yang menghasilkan kecocokan terbaik (paling sesuai) antara perkiraan dan penjualan aktual selama periode holdout direkomendasikan untuk digunakan dalam rencana. Rekomendasi ini khusus untuk setiap produk dan mungkin berubah setiap kali Anda membuat perkiraan. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) adalah mean (atau rata-rata) dari nilai absolut (atau besarnya) dari penyimpangan (atau kesalahan) antara data aktual dan perkiraan. MAD adalah ukuran dari besaran rata-rata kesalahan yang diharapkan, dengan metode peramalan dan riwayat data. Karena nilai absolut yang digunakan dalam perhitungan, kesalahan positif tidak membatalkan kesalahan negatif. Saat membandingkan beberapa metode peramalan, yang dengan MAD terkecil adalah produk yang paling andal untuk periode holdout tersebut. Bila perkiraan tidak bias dan kesalahan terdistribusi normal, ada hubungan matematis sederhana antara MAD dan dua ukuran distribusi umum lainnya, yaitu standar deviasi dan Mean Squared Error. Sebagai contoh: MAD (Sigma (Aktual) ndash (Forecast)) n Standar Deviasi, (sigma) cong 1,25 MAD Mean Squared Error cong ndashsigma2 Contoh ini menunjukkan perhitungan MAD untuk dua metode peramalan. Contoh ini mengasumsikan bahwa Anda telah menentukan dalam opsi pemrosesan bahwa periode periode holdout (periode paling sesuai) sama dengan lima periode. 3.3.1.1 Metode 1: Tahun Terakhir sampai Tahun Ini Tabel ini adalah riwayat yang digunakan dalam perhitungan MAD, mengingat Periode Fit Terbaik 5: Deviasi Absolut Rata-rata sama dengan (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. Bila prakiraan konsisten terlalu tinggi, persediaan terakumulasi dan biaya persediaan meningkat. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. Dalam layanan, besarnya kesalahan perkiraan biasanya lebih penting daripada perkiraan bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.
Pindah-rata-kotak-jenkins
Xforex-online-trading