Perkiraan rata-rata bergerak-rata-rata

Perkiraan rata-rata bergerak-rata-rata

Stampa-foto-su-forex-roma
Teknik-forex-paling-akurat
Simple-moving-average-pdf


Online-trading-bank Bagaimana-untuk-melaporkan-exercise-of-nonqualified-stock-options Pilihan-strategi-hasil-grafik Sistem perdagangan-sewa Impot-sur-le-revenu-forex Sinyal perdagangan-kinerja

Moving Averages - Rata-rata Bergerak Sederhana dan Eksponensial - Pendahuluan Sederhana dan Eksponensial Moving averages memperlengkapi data harga menjadi indikator tren berikut. Mereka tidak memprediksi arah harga, melainkan menentukan arah saat ini dengan lag. Moving averages lag karena mereka didasarkan pada harga masa lalu. Terlepas dari lag ini, moving averages membantu tindakan harga yang lancar dan menyaring noise. Mereka juga membentuk blok bangunan untuk banyak indikator dan lapisan teknis lainnya, seperti Bollinger Bands. MACD dan McClellan Oscillator. Dua jenis moving average yang paling populer adalah Simple Moving Average (SMA) dan Exponential Moving Average (EMA). Rata-rata pergerakan ini dapat digunakan untuk mengidentifikasi arah tren atau menentukan level support dan resistance yang potensial. Berikut adalah bagan dengan SMA dan EMA di atasnya: Perhitungan Rata-rata Bergerak Sederhana Rata-rata pergerakan sederhana terbentuk dengan menghitung harga rata-rata sekuritas selama periode tertentu. Rata-rata pergerakan paling banyak didasarkan pada harga penutupan. Rata-rata pergerakan sederhana 5 hari adalah jumlah lima hari harga penutupan dibagi lima. Sesuai namanya, rata-rata bergerak adalah rata-rata bergerak. Data lama dijatuhkan saat data baru tersedia. Hal ini menyebabkan rata-rata bergerak sepanjang skala waktu. Berikut adalah contoh rata-rata pergerakan 5 hari yang berkembang selama tiga hari. Hari pertama rata-rata bergerak hanya mencakup lima hari terakhir. Hari kedua dari rata-rata bergerak menurunkan titik data pertama (11) dan menambahkan titik data baru (16). Hari ketiga dari rata-rata bergerak berlanjut dengan menjatuhkan titik data pertama (12) dan menambahkan titik data baru (17). Pada contoh di atas, harga secara bertahap meningkat dari 11 menjadi 17 di atas total tujuh hari. Perhatikan bahwa rata-rata bergerak juga naik dari 13 menjadi 15 selama periode perhitungan tiga hari. Perhatikan juga bahwa setiap nilai rata-rata bergerak tepat di bawah harga terakhir. Sebagai contoh, rata-rata bergerak untuk hari pertama sama dengan 13 dan harga terakhir adalah 15. Harga empat hari sebelumnya lebih rendah dan ini menyebabkan rata-rata bergerak ke lag. Perhitungan Eksponensial Pindah Eksponensial Rata-rata pergerakan eksponensial mengurangi lag dengan menerapkan bobot lebih terhadap harga terakhir. Bobot yang diterapkan pada harga terbaru bergantung pada jumlah periode pada moving average. Ada tiga langkah untuk menghitung rata-rata pergerakan eksponensial. Pertama, hitung rata-rata bergerak sederhana. Exponential moving average (EMA) harus dimulai di suatu tempat sehingga rata-rata pergerakan sederhana digunakan sebagai EMA periode sebelumnya pada perhitungan pertama. Kedua, hitung pengganda bobot. Ketiga, hitung rata-rata pergerakan eksponensial. Rumus di bawah ini adalah untuk EMA 10 hari. Rata-rata pergerakan eksponensial 10 periode menerapkan bobot 18,18 pada harga terbaru. EMA 10 periode juga bisa disebut 18,18 EMA. EMA 20 periode berlaku 9,52 dengan harga paling tinggi (2 (201) .0952). Perhatikan bahwa pembobotan untuk periode waktu yang lebih pendek lebih dari bobot untuk jangka waktu yang lebih lama. Faktanya, bobot turun setengahnya setiap kali rata-rata bergerak rata-rata berganda. Jika Anda menginginkan persentase tertentu untuk EMA, Anda dapat menggunakan rumus ini untuk mengubahnya menjadi periode waktu dan kemudian memasukkan nilai tersebut sebagai parameter EMA039: Berikut adalah contoh spreadsheet dari rata-rata pergerakan sederhana 10 hari dan 10- Hari rata-rata bergerak eksponensial untuk Intel. Simple moving averages lurus ke depan dan memerlukan sedikit penjelasan. Rata-rata 10 hari hanya bergerak karena harga baru sudah tersedia dan harga lama turun. Rata-rata bergerak eksponensial dimulai dengan nilai rata-rata bergerak sederhana (22.22) pada perhitungan pertama. Setelah perhitungan pertama, rumus normal mengambil alih. Karena EMA dimulai dengan rata-rata bergerak sederhana, nilainya sebenarnya tidak akan terealisasi sampai 20 atau lebih periode kemudian. Dengan kata lain, nilai pada spreadsheet excel mungkin berbeda dari nilai grafik karena periode lihat belakang yang pendek. Spreadsheet ini hanya akan kembali 30 periode, yang berarti pengaruhnya terhadap rata-rata pergerakan sederhana memiliki 20 periode untuk menghilang. StockCharts kembali setidaknya 250 periode (biasanya jauh lebih jauh) untuk perhitungannya sehingga efek dari rata-rata pergerakan sederhana pada perhitungan pertama telah hilang sepenuhnya. Faktor Lag Semakin lama rata-rata bergerak, semakin lag. Rata-rata pergerakan eksponensial 10 hari akan memeluk harga cukup dekat dan berbalik segera setelah harga berbalik. Rata-rata bergerak pendek seperti kapal cepat - gesit dan cepat berubah. Sebaliknya, rata-rata pergerakan 100 hari berisi banyak data masa lalu yang memperlambatnya. Rata-rata bergerak yang lebih panjang seperti kapal tanker laut - lesu dan lamban untuk berubah. Dibutuhkan pergerakan harga yang lebih besar dan lebih lama untuk rata-rata pergerakan 100 hari untuk mengubah arah. Bagan di atas menunjukkan SampP 500 ETF dengan EMA 10 hari mengikuti harga dan SMA 100 hari yang digiling lebih tinggi. Bahkan dengan penurunan Januari-Februari, SMA 100 hari itu mengikuti kursus dan tidak menolak. SMA 50 hari itu berada di antara rata-rata pergerakan 10 dan 100 hari ketika sampai pada faktor lag. Rata-rata Bergerak Sederhana vs Eksponensial Meskipun ada perbedaan yang jelas antara rata-rata bergerak sederhana dan rata-rata bergerak eksponensial, yang satu tidak selalu lebih baik dari yang lain. Rata-rata pergerakan eksponensial memiliki lag lebih sedikit dan karena itu lebih sensitif terhadap harga terkini - dan perubahan harga terkini. Rata-rata bergerak eksponensial akan berubah sebelum rata-rata bergerak sederhana. Rata-rata pergerakan sederhana, di sisi lain, merupakan rata-rata harga sebenarnya untuk keseluruhan periode waktu. Dengan demikian, rata-rata pergerakan sederhana mungkin lebih sesuai untuk mengidentifikasi level support atau resistance. Preferensi rata-rata bergerak bergantung pada tujuan, gaya analisis dan horison waktu. Chartis harus bereksperimen dengan kedua jenis rata-rata bergerak serta rentang waktu yang berbeda untuk menemukan yang paling sesuai. Bagan di bawah ini menunjukkan IBM dengan SMA 50 hari berwarna merah dan EMA 50 hari berwarna hijau. Keduanya memuncak pada akhir Januari, namun penurunan EMA lebih tajam dibanding penurunan di SMA. EMA muncul pada pertengahan Februari, namun SMA terus berlanjut hingga akhir Maret. Perhatikan bahwa SMA muncul lebih dari sebulan setelah EMA. Panjang dan Jangka Waktu Panjang rata-rata bergerak bergantung pada tujuan analisis. Rata-rata pergerakan pendek (5-20 periode) paling sesuai untuk tren dan perdagangan jangka pendek. Chartists yang tertarik pada tren jangka menengah akan memilih moving average yang lebih panjang yang dapat memperpanjang periode 20-60. Investor jangka panjang akan memilih moving averages dengan periode 100 atau lebih. Beberapa panjang rata-rata bergerak lebih populer daripada yang lain. Rata-rata pergerakan 200 hari mungkin yang paling populer. Karena panjangnya, ini jelas merupakan moving average jangka panjang. Selanjutnya, rata-rata pergerakan 50 hari cukup populer untuk tren jangka menengah. Banyak chartis menggunakan moving average 50 hari dan 200 hari bersama-sama. Jangka pendek, rata-rata pergerakan 10 hari cukup populer di masa lalu karena mudah dihitung. Seseorang hanya menambahkan angka dan memindahkan titik desimal. Identifikasi Trend Sinyal yang sama dapat dihasilkan dengan menggunakan rata-rata bergerak sederhana atau eksponensial. Seperti disebutkan di atas, preferensi tergantung pada masing-masing individu. Contoh di bawah ini akan menggunakan rata-rata bergerak sederhana dan eksponensial. Istilah moving average berlaku untuk moving average rata-rata dan eksponensial. Arah rata-rata bergerak menyampaikan informasi penting tentang harga. Kenaikan rata-rata bergerak menunjukkan bahwa harga pada umumnya meningkat. Jatuh rata-rata bergerak menunjukkan bahwa harga rata-rata jatuh. Kenaikan moving average jangka panjang mencerminkan uptrend jangka panjang. Jatuh moving average jangka panjang mencerminkan tren turun jangka panjang. Bagan di atas menunjukkan 3M (MMM) dengan rata-rata pergerakan eksponensial 150 hari. Contoh ini menunjukkan seberapa baik rata-rata bergerak bekerja saat trennya kuat. EMA 150 hari ditolak pada bulan November 2007 dan sekali lagi pada bulan Januari 2008. Perhatikan bahwa dibutuhkan penurunan 15 untuk membalikkan arah rata-rata bergerak ini. Indikator tertinggal ini mengidentifikasi pembalikan tren saat terjadi (paling banter) atau setelah terjadi (paling buruk). MMM terus berlanjut hingga Maret 2009 lalu melonjak 40-50. Perhatikan bahwa EMA 150 hari tidak muncul sampai setelah gelombang ini terjadi. Setelah itu, bagaimanapun, MMM terus berlanjut dalam 12 bulan ke depan. Moving averages bekerja cemerlang dalam tren yang kuat. Double Crossover Dua moving averages dapat digunakan bersamaan untuk menghasilkan sinyal crossover. Dalam Analisis Teknis Pasar Keuangan. John Murphy menyebutnya metode crossover ganda. Crossover ganda melibatkan satu moving average yang relatif singkat dan satu moving average yang relatif panjang. Seperti semua moving averages, panjang umum moving average mendefinisikan kerangka waktu untuk sistem. Sistem yang menggunakan EMA 5 hari dan EMA 35 hari akan dianggap jangka pendek. Sistem yang menggunakan SMA 50 hari dan SMA 200 hari akan dianggap jangka menengah, bahkan mungkin dalam jangka panjang. Crossover bullish terjadi saat moving average yang pendek melintasi di atas moving average yang lebih panjang. Ini juga dikenal sebagai golden cross. Sebuah crossover bearish terjadi ketika moving average yang lebih pendek melintasi di bawah moving average yang lebih panjang. Ini dikenal sebagai salib mati. Pindah rata-rata crossover menghasilkan sinyal yang relatif terlambat. Bagaimanapun, sistem ini menggunakan dua indikator lagging. Semakin lama periode rata-rata bergerak, semakin besar lag pada sinyal. Sinyal ini bekerja hebat saat tren bagus terus berlanjut. Namun, sistem crossover moving average akan menghasilkan banyak whipsaws tanpa adanya tren yang kuat. Ada juga metode triple crossover yang melibatkan tiga moving averages. Sekali lagi, sinyal dihasilkan saat moving average terpendek melintasi dua rata-rata bergerak yang lebih lama. Sistem triple crossover sederhana mungkin melibatkan rata-rata pergerakan 5 hari, 10 hari dan 20 hari. Bagan di atas menunjukkan Home Depot (HD) dengan EMA 10 hari (garis putus-putus hijau) dan EMA 50 hari (garis merah). Garis hitam adalah tutupan harian. Menggunakan crossover rata-rata bergerak akan menghasilkan tiga whipsaws sebelum menangkap perdagangan yang baik. EMA 10 hari tersebut pecah di bawah EMA 50 hari pada akhir Oktober (1), namun ini tidak berlangsung lama selama 10 hari bergerak kembali di atas pada pertengahan November (2). Cross ini bertahan lebih lama, namun crossover bearish berikutnya di bulan Januari (3) terjadi mendekati level harga akhir November, sehingga terjadi whipsaw lainnya. Salib bearish ini tidak berlangsung lama karena EMA 10 hari bergerak kembali di atas 50 hari beberapa hari kemudian (4). Setelah tiga sinyal buruk, sinyal keempat meramalkan pergerakan kuat saat saham menguat di atas 20. Ada dua takeaways di sini. Pertama, crossover rentan terhadap whipsaw. Filter harga atau waktu dapat diterapkan untuk membantu mencegah whipsaws. Pedagang mungkin memerlukan crossover sampai 3 hari terakhir sebelum bertindak atau memerlukan EMA 10 hari untuk bergerak di bawah EMA 50 hari dengan jumlah tertentu sebelum bertindak. Kedua, MACD dapat digunakan untuk mengidentifikasi dan mengkuantifikasi crossover ini. MACD (10,50,1) akan menunjukkan garis yang mewakili perbedaan antara dua rata-rata bergerak eksponensial. MACD berubah positif selama salib emas dan negatif selama salib mati. The Persentase Harga Oscillator (PPO) dapat digunakan dengan cara yang sama untuk menunjukkan perbedaan persentase. Perhatikan bahwa MACD dan PPO didasarkan pada rata-rata pergerakan eksponensial dan tidak akan sesuai dengan rata-rata bergerak sederhana. Bagan ini menunjukkan Oracle (ORCL) dengan EMA 50 hari, EMA 200 hari dan MACD (50,200,1). Ada empat perpindahan rata-rata bergerak selama periode 2 12 tahun. Tiga yang pertama menghasilkan whipsaws atau bad trade. Tren yang berkelanjutan dimulai dengan crossover keempat saat ORCL maju ke pertengahan 20an. Sekali lagi, pergerakan rata-rata crossover bekerja dengan baik saat trennya kuat, namun menghasilkan kerugian karena tidak adanya tren. Harga Crossover Moving averages juga dapat digunakan untuk menghasilkan sinyal dengan crossover harga sederhana. Sinyal bullish dihasilkan saat harga bergerak di atas rata-rata bergerak. Sinyal bearish dihasilkan saat harga bergerak di bawah moving average. Harga crossover dapat dikombinasikan untuk diperdagangkan dalam tren yang lebih besar. Rata-rata pergerakan yang lebih lama menentukan nada untuk tren yang lebih besar dan rata-rata pergerakan yang lebih pendek digunakan untuk menghasilkan sinyal. Kita akan mencari harga bullish hanya bila harga sudah di atas moving average yang lebih panjang. Ini akan diperdagangkan selaras dengan tren yang lebih besar. Misalnya, jika harga di atas rata-rata pergerakan 200 hari, para chartists hanya akan fokus pada sinyal saat harga bergerak di atas rata-rata pergerakan 50 hari. Jelas, pergerakan di bawah rata-rata pergerakan 50 hari akan mendahului sinyal semacam itu, namun persilangan bearish semacam itu akan diabaikan karena tren yang lebih besar sudah naik. Salib bearish hanya akan menyarankan pullback dalam uptrend yang lebih besar. Sebuah cross back di atas moving average 50 hari akan memberi sinyal kenaikan harga dan kelanjutan dari uptrend yang lebih besar. Bagan berikutnya menunjukkan Emerson Electric (EMR) dengan EMA 50 hari dan EMA 200 hari. Saham bergerak di atas dan bertahan di atas rata-rata pergerakan 200 hari di bulan Agustus. Ada penurunan di bawah EMA 50 hari pada awal November dan lagi di awal Februari. Harga cepat bergerak kembali di atas EMA 50 hari untuk memberikan sinyal bullish (panah hijau) selaras dengan uptrend yang lebih besar. MACD (1,50,1) ditunjukkan di jendela indikator untuk mengkonfirmasi harga di atas atau di bawah EMA 50 hari. EMA 1 hari sama dengan harga penutupan. MACD (1,50,1) positif saat penutupan berada di atas EMA 50 hari dan negatif saat penutupan berada di bawah EMA 50 hari. Support and Resistance Moving averages juga dapat berperan sebagai support dalam uptrend dan resistance dalam downtrend. Pergerakan naik jangka pendek mungkin akan menemukan support mendekati moving average 20 hari sederhana, yang juga digunakan pada Bollinger Bands. Sebuah uptrend jangka panjang mungkin akan menemukan support mendekati rata-rata pergerakan sederhana 200 hari, yang merupakan moving average jangka panjang yang paling populer. Jika fakta, rata-rata pergerakan 200 hari mungkin menawarkan dukungan atau penolakan hanya karena sangat banyak digunakan. Hal ini hampir seperti ramalan yang dipenuhi sendiri. Bagan di atas menunjukkan Komposit NY dengan rata-rata pergerakan sederhana 200 hari dari pertengahan 2004 sampai akhir tahun 2008. Dukungan 200 hari telah diberikan berkali-kali selama uang muka. Begitu tren terbalik dengan double support break, moving average 200 hari bertindak sebagai resistance di sekitar 9500. Jangan mengharapkan level support dan resistance yang tepat dari moving averages, terutama moving average yang lebih lama. Pasar didorong oleh emosi, yang membuat mereka cenderung mengalami overshoot. Alih-alih tingkat yang tepat, moving averages dapat digunakan untuk mengidentifikasi zona support atau resistance. Kesimpulan Keuntungan menggunakan moving averages perlu dipertimbangkan terhadap kerugiannya. Moving averages adalah trend berikut, atau lagging, indikator yang akan selalu menjadi langkah di belakang. Ini belum tentu hal yang buruk sekalipun. Toh, trennya adalah teman Anda dan yang terbaik adalah berdagang ke arah tren. Moving averages memastikan bahwa trader sesuai dengan tren saat ini. Meskipun trennya adalah teman Anda, sekuritas menghabiskan banyak waktu dalam rentang perdagangan, yang membuat rata-rata bergerak tidak efektif. Begitu dalam tren, rata-rata bergerak akan membuat Anda tetap bertahan, namun juga memberi sinyal terlambat. Jangan berharap untuk menjual di bagian atas dan membeli di bagian bawah menggunakan moving averages. Seperti kebanyakan alat analisis teknis lainnya, moving averages tidak boleh digunakan sendiri, namun bersamaan dengan alat pelengkap lainnya. Chartis dapat menggunakan moving averages untuk menentukan keseluruhan trend dan kemudian menggunakan RSI untuk menentukan level overbought atau oversold. Menambahkan Moving Average ke Chart StockCharts Moving averages tersedia sebagai fitur overlay harga di meja kerja SharpCharts. Dengan menggunakan menu drop-down Overlay, pengguna dapat memilih rata-rata bergerak sederhana atau rata-rata bergerak eksponensial. Parameter pertama digunakan untuk mengatur jumlah periode waktu. Parameter opsional dapat ditambahkan untuk menentukan bidang harga mana yang harus digunakan dalam perhitungan - O untuk Open, H untuk High, L untuk Low, dan C untuk Close. Koma digunakan untuk memisahkan parameter. Parameter opsional lainnya dapat ditambahkan untuk menggeser rata-rata bergerak ke kiri (dulu) atau kanan (masa depan). Angka negatif (-10) akan menggeser rata-rata bergerak ke kiri 10 periode. Angka positif (10) akan menggeser rata-rata bergerak ke kanan 10 periode. Beberapa moving averages dapat dilapisi dengan harga plot dengan hanya menambahkan garis overlay lainnya ke meja kerja. Anggota StockCharts dapat mengubah warna dan gaya untuk membedakan antara beberapa moving averages. Setelah memilih indikator, buka Advanced Options dengan mengklik segitiga hijau kecil. Opsi Lanjutan juga dapat digunakan untuk menambahkan overlay rata-rata bergerak ke indikator teknis lainnya seperti RSI, CCI, dan Volume. Klik di sini untuk live chart dengan beberapa moving average yang berbeda. Menggunakan Moving Averages with StockCharts Scans Berikut adalah beberapa contoh pemindaian yang dapat digunakan anggota StockCharts untuk memindai berbagai situasi rata-rata bergerak: Bullish Moving Average Cross: Pemindaian ini mencari saham dengan moving average 150 hari yang baru dan sebuah salib bullish dari 5 -day EMA dan EMA 35 hari. Rata-rata pergerakan 150 hari meningkat selama diperdagangkan di atas level lima hari yang lalu. Cross bullish terjadi ketika EMA 5 hari bergerak diatas EMA 35 hari di atas rata-rata volume. Bearish Moving Average Cross: Pemindaian ini mencari saham dengan rata-rata pergerakan sederhana 150 hari yang jatuh dan umpan silang bearish EMA 5 hari dan EMA 35 hari. Rata-rata pergerakan 150 hari turun selama diperdagangkan di bawah level lima hari yang lalu. Salib bearish terjadi saat EMA 5 hari bergerak di bawah EMA 35 hari di atas rata-rata volume. Pelajaran lebih lanjut Buku John Murphy039 memiliki bab yang ditujukan untuk rata-rata bergerak dan berbagai kegunaannya. Murphy mencakup pro dan kontra moving averages. Selain itu, Murphy menunjukkan bagaimana rata-rata bergerak bekerja dengan Bollinger Bands dan sistem perdagangan berbasis saluran. Analisis Teknis Pasar Keuangan John MurphySimple Moving Average - SMA BREAKING DOWN Simple Moving Average - SMA Rata-rata bergerak sederhana dapat disesuaikan sehingga dapat dihitung untuk periode waktu yang berbeda, cukup dengan menambahkan harga penutupan keamanan untuk sebuah Jumlah periode waktu dan kemudian membagi total ini dengan jumlah periode waktu, yang memberikan harga rata-rata keamanan selama periode tersebut. Rata-rata bergerak sederhana menghaluskan volatilitas, dan membuatnya lebih mudah untuk melihat tren harga suatu keamanan. Jika nilai rata-rata bergerak sederhana naik, ini berarti harga keamanan semakin meningkat. Jika mengarah ke bawah berarti harga keamanan menurun. Semakin panjang jangka waktu untuk moving average, semakin halus moving average yang sederhana. Rata-rata pergerakan jangka pendek lebih mudah berubah, namun bacaannya lebih mendekati data sumber. Signifikansi Analitis Moving averages adalah alat analisis penting yang digunakan untuk mengidentifikasi tren harga saat ini dan potensi perubahan dalam tren yang telah mapan. Bentuk paling sederhana menggunakan rata-rata bergerak sederhana dalam analisis adalah menggunakannya untuk mengidentifikasi dengan cepat apakah keamanan dalam tren naik atau tren turun. Alat analisis lain yang populer, walaupun sedikit lebih kompleks, adalah membandingkan rata-rata bergerak sederhana dengan masing-masing yang mencakup rentang waktu yang berbeda. Jika rata-rata bergerak sederhana jangka pendek berada di atas rata-rata jangka panjang, uptrend diharapkan terjadi. Di sisi lain, rata-rata jangka panjang di atas rata-rata jangka pendek menandakan pergerakan turun dalam tren. Pola Perdagangan Populer Dua pola perdagangan populer yang menggunakan moving average sederhana mencakup salib kematian dan salib emas. Salib kematian terjadi saat rata-rata pergerakan sederhana 50 hari di bawah rata-rata pergerakan 200 hari. Ini dianggap sebagai sinyal bearish, sehingga kerugian lebih lanjut di simpan. Salib emas terjadi ketika rata-rata pergerakan jangka pendek di atas rata-rata bergerak jangka panjang. Diperkuat oleh volume perdagangan yang tinggi, ini dapat memberi sinyal keuntungan lebih lanjut di toko. Perkiraan Perhitungan Contoh A.1 Metode Perhitungan Prakiraan Dua belas metode untuk menghitung perkiraan tersedia. Sebagian besar metode ini menyediakan kontrol pengguna terbatas. Misalnya, bobot yang ditempatkan pada data historis terkini atau rentang tanggal data historis yang digunakan dalam perhitungan mungkin ditentukan. Contoh berikut menunjukkan prosedur perhitungan untuk masing-masing metode peramalan yang ada, dengan data set identik. Contoh berikut menggunakan data penjualan 2004 dan 2005 yang sama untuk menghasilkan perkiraan penjualan tahun 2006. Selain perhitungan perkiraan, masing-masing contoh mencakup perkiraan simulasi tahun 2005 untuk periode tiga bulan penyimpanan (opsi pemrosesan 19 3) yang kemudian digunakan untuk persentase akurasi dan perhitungan deviasi absolut rata-rata (penjualan aktual dibandingkan dengan perkiraan simulasi). A.2 Kriteria Evaluasi Kinerja Prakiraan Tergantung pada pilihan pilihan pemrosesan Anda dan pada tren dan pola yang ada dalam data penjualan, beberapa metode peramalan akan berkinerja lebih baik daripada yang lain untuk kumpulan data historis tertentu. Metode peramalan yang sesuai untuk satu produk mungkin tidak sesuai untuk produk lain. Hal ini juga tidak mungkin bahwa metode peramalan yang memberikan hasil yang baik pada satu tahap siklus hidup produk akan tetap sesuai sepanjang keseluruhan siklus kehidupan. Anda dapat memilih antara dua metode untuk mengevaluasi kinerja metode peramalan saat ini. Ini adalah Mean Absolute Deviation (MAD) dan Persen of Accuracy (POA). Kedua metode evaluasi kinerja ini memerlukan data penjualan historis untuk jangka waktu yang ditentukan pengguna. Periode waktu ini disebut periode holdout atau periode yang paling sesuai (PBF). Data dalam periode ini digunakan sebagai dasar untuk merekomendasikan metode peramalan mana yang akan digunakan dalam membuat perkiraan proyeksi berikutnya. Rekomendasi ini khusus untuk setiap produk, dan mungkin berubah dari satu perkiraan generasi ke generasi berikutnya. Dua metode evaluasi kinerja perkiraan ditunjukkan di halaman berikut contoh dari dua belas metode peramalan. A.3 Metode 1 - Persentase Tertentu Selama Tahun Terakhir Metode ini mengalikan data penjualan dari tahun sebelumnya oleh faktor yang ditentukan pengguna misalnya, 1,10 untuk kenaikan 10, atau 0,97 untuk penurunan 3. Riwayat penjualan yang disyaratkan: Satu tahun untuk menghitung perkiraan ditambah jumlah waktu yang ditentukan pengguna untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.4.1 Prakiraan Perhitungan Rentang sejarah penjualan digunakan dalam menghitung faktor pertumbuhan (opsi pemrosesan 2a) 3 dalam contoh ini. Jumlahkan tiga bulan terakhir tahun 2005: 114 119 137 370 Jumlah tiga bulan yang sama untuk tahun sebelumnya: 123 139 133 395 Faktor yang dihitung 370395 0,9367 Hitung prakiraan: penjualan Januari 128 penjualan di 1289367 119.8036 atau sekitar 120 Februari, 2005 penjualan 117 0,9367 109,5939 atau sekitar 110 Maret, 2005 penjualan 115 0.9367 107.7205 atau sekitar 108 A.4.2 Perhitungan Prakiraan Simulasi Jumlah tiga bulan di tahun 2005 sebelum periode holdout (Juli, Agustus, September): 129 140 131 400 Jumlah tiga bulan yang sama untuk Tahun sebelumnya: 141 128 118 387 Faktor yang diperhitungkan 400387 1.033591731 Perhitungan perkiraan simulasi: penjualan Oktober 123 1.033591731 127.13178 November, 2004 penjualan 139 1.033591731 143.66925 Desember 2004 penjualan 133 1.033591731 137.4677 A.4.3 Persen Perhitungan Akurasi POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Perhitungan Deviasi Absolut Mutual MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Metode 3 - Tahun lalu sampai Tahun Ini Metode ini mengumpulkan data penjualan dari tahun sebelumnya sampai tahun depan. Riwayat penjualan yang disyaratkan: Satu tahun untuk menghitung perkiraan ditambah jumlah periode waktu yang ditentukan untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.6.1 Prakiraan Perhitungan Jumlah periode yang harus dimasukkan rata-rata (opsi pemrosesan 4a) 3 pada contoh ini Untuk setiap bulan perkiraan, rata-rata data tiga bulan sebelumnya. Perkiraan Januari: 114 119 137 370 370, 370 3 123.333 atau 123 ramalan Februari: 119 137 123 379, 379 3 126,333 atau 126 perkiraan bulan Maret: 137 123 126 379, 386 3 128,667 atau 129 A.6.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2005 (129 140 131) 3 133.3333 November 2005 penjualan (140 131 114) 3 128.3333 Penjualan pada bulan Desember 2005 (131 114 119) 3 121.3333 A.6.3 Persen Perhitungan Akurasi POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mean Mutlak Perhitungan Deviasi MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Metode 5 - Pendekatan Linier Linear Approximation menghitung tren berdasarkan dua titik data penjualan historis. Kedua titik tersebut menentukan garis lurus yang diproyeksikan ke masa depan. Gunakan metode ini dengan hati-hati, perkiraan jangka panjang diimbangi oleh perubahan kecil hanya dalam dua titik data. Diperlukan riwayat penjualan: Jumlah periode yang termasuk dalam regresi (opsi pemrosesan 5a), ditambah 1 ditambah jumlah periode waktu untuk mengevaluasi kinerja perkiraan (opsi pemrosesan 19). A.8.1 Prakiraan Perhitungan Jumlah periode yang termasuk dalam regresi (opsi pemrosesan 6a) 3 pada contoh ini Untuk setiap bulan perkiraan, tambahkan kenaikan atau penurunan selama periode yang ditentukan sebelum periode holdout periode sebelumnya. Rata-rata tiga bulan sebelumnya (114 119 137) 3 123.3333 Ringkasan tiga bulan sebelumnya dengan bobot yang dipertimbangkan (114 1) (119 2) (137 3) 763 Perbedaan antara nilai 763 - 123.3333 (1 2 3) 23 Rasio ( 12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 232 11.5 Value2 Rasio average - value1 123.3333 - 11.5 2 100.3333 Prakiraan (1 n) nilai1 nilai2 4 11.5 100.3333 146.333 atau 146 Prakiraan 5 11.5 100.3333 157.8333 atau 158 Prakiraan 6 11.5 100.3333 169.3333 Atau 169 A.8.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2004: Rata-rata tiga bulan sebelumnya (129 140 131) 3 133.3333 Ringkasan tiga bulan sebelumnya dengan bobot yang dipertimbangkan (129 1) (140 2) (131 3) 802 Perbedaan antara Nilai 802 - 133.3333 (1 2 3) 2 Rasio (12 22 32) - 2 3 14 - 12 2 Value1 DifferenceRatio 22 1 Value2 Rasio average - value1 133.3333 - 1 2 131.3333 Prakiraan (1 n) value1 value2 4 1 131.3333 135.3333 November 2004 penjualan Rata-rata tiga bulan sebelumnya (140 131 114) 3 128.3333 Ringkasan tiga bulan sebelumnya dengan berat yang dipertimbangkan (140 1) (131 2) (114 3) 744 Perbedaan antara nilai 744 - 128.3333 (1 2 3) -25.9999 Value1 DifferenceRatio -25.99992 -12.9999 Value2 Average - value1 ratio 128.3333 - (-12.9999) 2 154.3333 Prakiraan 4 -12.9999 154.3333 102.3333 Penjualan Desember 2004 Rata-rata dari tiga bulan sebelumnya (131 114 119) 3 121.3333 Ringkasan tiga bulan sebelumnya dengan mempertimbangkan bobot ( 131 1) (114 2) (119 3) 716 Perbedaan antara nilai 716 - 121.3333 (1 2 3) -11.9999 Value1 DifferenceRatio -11.99992 -5.9999 Value2 Rasio average - value1 121.3333 - (-5.9999) 2 133.3333 Prakiraan 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Persen Perhitungan Akurasi POA (135.33 102.33 109.33) (114 119 137) 100 93,78 A.8,4 Perhitungan Deviasi Absolut Mutual MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 Metode 7 - Secon D Degree Approximation Regresi Linier menentukan nilai a dan b dalam rumus ramalan Y a bX dengan tujuan untuk menyesuaikan garis lurus dengan data riwayat penjualan. Pendekatan Gelar Kedua serupa. Namun, metode ini menentukan nilai a, b, dan c dalam rumus ramalan Y a bX cX2 dengan tujuan untuk menyesuaikan kurva dengan data riwayat penjualan. Metode ini mungkin berguna saat produk berada dalam transisi antara tahap siklus hidup. Misalnya, ketika produk baru bergerak dari pengenalan tahap pertumbuhan, tren penjualan mungkin akan meningkat. Karena istilah orde kedua, ramalan dapat dengan cepat mendekati tak terhingga atau turun menjadi nol (tergantung pada apakah koefisien c positif atau negatif). Oleh karena itu, metode ini hanya berguna dalam jangka pendek. Perkiraan spesifikasi: Rumus menemukan a, b, dan c agar sesuai dengan kurva sampai tiga titik. Anda menentukan n dalam opsi pemrosesan 7a, jumlah periode waktu data untuk mengumpulkan ke masing-masing dari tiga titik. Dalam contoh ini n 3. Oleh karena itu, data penjualan aktual untuk bulan April sampai Juni digabungkan ke poin pertama, Q1. Juli sampai September ditambahkan bersama untuk menciptakan Q2, dan Oktober sampai Desember ke Q3. Kurva akan disesuaikan dengan tiga nilai Q1, Q2, dan Q3. Diperlukan riwayat penjualan: 3 n periode untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (PBF). Jumlah periode untuk memasukkan (opsi pemrosesan 7a) 3 dalam contoh ini Gunakan tiga bulan sebelumnya (3 n) bulan dalam blok tiga bulan: Q1 (Apr - Jun) 125 122 137 384 Q2 (Jul - Sep) 129 140 131 400 Q3 ( Okt - Dec) 114 119 137 370 Langkah selanjutnya adalah menghitung tiga koefisien a, b, dan c yang akan digunakan dalam rumus peramalan Y a bX cX2 (1) Q1 a bX cX2 (di mana X 1) abc (2) Q2 A bX cX2 (di mana X 2) a 2b 4c (3) Q3 a bX cX2 (di mana X 3) a 3b 9c Selesaikan tiga persamaan secara simultan untuk menemukan b, a, dan c: kurangi persamaan (1) dari persamaan (2) Dan memecahkan untuk b (2) - (1) Q2 - Q1 b 3c Mengganti persamaan ini untuk b ke persamaan (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Akhirnya, ganti persamaan ini untuk a dan b ke Persamaan (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Metode Pendekatan Derajat Gelar Kedua menghitung a, b, dan c sebagai berikut: Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Januari sampai perkiraan bulan Maret (X4): (322 340 - 368) 3 2943 98 Per periode April sampai ramalan bulan Juni (X5): (322 425 - 575) 3 57.333 atau 57 per periode Juli sampai perkiraan bulan September (X6): (322 510 - 828) 3 1,33 atau 1 per periode Oktober sampai Desember (X7) (322 599 - 11273 -70 A.9.2 Simulasi Prakiraan Perhitungan Penjualan Oktober, November dan Desember 2004: Q1 (Jan - Mar) 360 Q2 (Apr - Jun) 384 Q3 (Jul - Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9,3 Persen Perhitungan Akurasi POA (136 136 136) 110.17 A.9.4 Perhitungan Deviasi Absolut Mutual MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 Metode 8 - Metode Fleksibel Metode Fleksibel (Persen Lebih dari 10 Bulan Sebelumnya) serupa dengan Metode 1, Persen dari Tahun Terakhir. Kedua metode tersebut melipatgandakan data penjualan dari periode waktu sebelumnya oleh faktor yang ditentukan pengguna, lalu memproyeksikan hasilnya ke masa depan. Dalam metode Percent Over Last Year, proyeksi didasarkan pada data dari periode waktu yang sama tahun sebelumnya. Metode Fleksibel menambahkan kemampuan untuk menentukan jangka waktu selain periode yang sama tahun lalu untuk digunakan sebagai dasar perhitungan. Faktor perkalian Misalnya, tentukan 1,15 pada opsi pemrosesan 8b untuk meningkatkan data riwayat penjualan sebelumnya sebesar 15. Periode dasar. Misalnya, n 3 akan menyebabkan perkiraan pertama didasarkan pada data penjualan pada bulan Oktober 2005. Riwayat penjualan minimum: Pengguna menetapkan jumlah periode kembali ke periode dasar, ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan ( PBF). A.10.4 Mean Absolute Deviation Calculation MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Metode 9 - Weighted Moving Average Metode Moved Moving Average (WMA) mirip dengan Metode 4, Moving Average (MA). Namun, dengan Weighted Moving Average Anda dapat menetapkan bobot yang tidak sama dengan data historis. Metode ini menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Data yang lebih baru biasanya diberi bobot lebih besar dari data yang lebih tua, jadi ini membuat WMA lebih responsif terhadap pergeseran di tingkat penjualan. Namun, perkiraan bias dan kesalahan sistematis masih terjadi bila sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. N jumlah periode sejarah penjualan yang akan digunakan dalam perhitungan perkiraan. Sebagai contoh, tentukan n 3 pada opsi pemrosesan 9a untuk menggunakan tiga periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Nilai yang besar untuk n (seperti 12) memerlukan lebih banyak riwayat penjualan. Ini menghasilkan perkiraan yang stabil, namun akan lambat untuk mengenali pergeseran tingkat penjualan. Di sisi lain, nilai kecil untuk n (seperti 3) akan merespons perubahan tingkat penjualan yang lebih cepat, namun ramalan dapat berfluktuasi secara luas sehingga produksi tidak dapat merespons variasi. Bobot ditugaskan untuk setiap periode data historis. Bobot yang ditugaskan harus berjumlah 1,00. Misalnya, ketika n3, tetapkan bobot 0,6, 0,3, dan 0,1, dengan data terbaru yang menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13.5 A.12 Metode 10 - Linear Smoothing Metode ini serupa dengan Metode 9, Weighted Moving Average (WMA). Namun, alih-alih menugaskan bobot secara sewenang-wenang ke data historis, formula digunakan untuk menetapkan bobot yang menurun secara linier dan jumlahnya menjadi 1,00. Metode ini kemudian menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Seperti halnya semua teknik peramalan rata-rata bergerak linear, prakiraan bias dan kesalahan sistematis terjadi ketika sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. N jumlah periode sejarah penjualan yang akan digunakan dalam perhitungan perkiraan. Ini ditentukan dalam opsi pemrosesan 10a. Sebagai contoh, tentukan n 3 pada opsi pemrosesan 10b untuk menggunakan tiga periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Sistem akan secara otomatis menetapkan bobot data historis yang menurun secara linear dan jumlahnya menjadi 1,00. Misalnya, ketika n3, sistem akan menetapkan bobot 0,5, 0,3333, dan 0,1, dengan data terbaru menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (PBF). A.12.1 Prakiraan Perhitungan Jumlah periode untuk dimasukkan ke dalam rata-rata smoothing (opsi pemrosesan 10a) 3 dalam contoh ini Rasio untuk satu periode sebelum 3 (n2 n) 2 3 (32 3) 2 36 0,5 Rasio untuk dua periode sebelumnya 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Rasio untuk tiga periode sebelum 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Ramalan bulan Januari: 137 0,5 119 13 114 16 127,16 atau 127 Februari perkiraan: 127 0,5 137 13 119 16 129 perkiraan Maret: 129 0.5 127 13 137 16 129.666 atau 130 A.12.2 Perhitungan Prakiraan Simulasi Penjualan Oktober 2004 129 16 140 26 131 36 133.6666 November 2004 penjualan 140 16 131 26 114 36 124 Desember 2004 penjualan 131 16 114 26 119 36 119.3333 A.12.3 Persen Perhitungan Akurasi POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Perhitungan Deviasi Absolut Mutual MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Metode 11 - Exponential Smoothing Metode ini mirip dengan Metode 10, Linear Smoothing. Dalam Linear Smoothing, sistem memberikan bobot pada data historis yang menurun secara linear. Dalam eksponensial smoothing, sistem memberikan bobot yang secara eksponensial membusuk. Persamaan peramalan eksponensial eksponensial adalah: Prakiraan (Penjualan Aktual Sebelumnya) (1 -a) Prakiraan sebelumnya Prakiraan adalah rata-rata tertimbang dari penjualan aktual dari periode sebelumnya dan perkiraan dari periode sebelumnya. A adalah bobot yang diterapkan pada penjualan aktual untuk periode sebelumnya. (1 -a) adalah bobot yang diterapkan pada ramalan untuk periode sebelumnya. Nilai yang valid untuk kisaran 0 sampai 1, dan biasanya turun antara 0,1 dan 0,4. Jumlah bobotnya adalah 1.00. A (1 -a) 1 Anda harus menetapkan nilai untuk konstanta pemulusan, a. Jika Anda tidak menetapkan nilai untuk konstanta pemulusan, sistem menghitung nilai yang diasumsikan berdasarkan jumlah periode riwayat penjualan yang ditentukan dalam opsi pemrosesan 11a. Sebuah konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai yang valid berkisar antara 0 sampai 1. n kisaran data riwayat penjualan yang disertakan dalam perhitungan. Umumnya satu tahun data penjualan data sudah cukup untuk memperkirakan tingkat penjualan secara umum. Untuk contoh ini, nilai kecil untuk n (n 3) dipilih untuk mengurangi perhitungan manual yang diperlukan untuk memverifikasi hasilnya. Perataan eksponensial dapat menghasilkan perkiraan berdasarkan sedikit data historis. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (PBF). A.13.1 Prakiraan Perhitungan Jumlah periode yang harus disertakan dalam rata-rata pemulusan (opsi pemrosesan 11a) 3, dan faktor alfa (opsi pemrosesan 11b) kosong pada contoh ini merupakan faktor untuk data penjualan tertua 2 (11), atau 1 bila alfa ditentukan Faktor untuk data penjualan tertua ke 2 (12), atau alfa saat alfa ditetapkan sebagai faktor untuk data penjualan tertua ke-3 (2), atau alfa saat alpha ditetapkan sebagai faktor untuk data penjualan terakhir 2 (1n) , Atau alpha ketika alpha ditentukan November Sm. Rata-rata A (Oktober Aktual) (1 - a) Oktober Sm. Rata-rata 1 114 0 0 114 Desember Sm. Rata-rata A (November Aktual) (1 - a) November Sm. Rata-rata 23 119 13 114 117.3333 Prakiraan bulan Januari (Desember Aktual) (1 - a) Desember Sm. Rata-rata 24 137 24 117.3333 127.16665 atau 127 Februari Prakiraan Prakiraan Januari 127 Maret Prakiraan Januari Forecast 127 A.13.2 Perhitungan Prakiraan Simulasi Juli 2004 Sm. Rata-rata 22 129 129 Agustus Sm. Rata-rata 23 140 13 129 136.3333 September Sm. Rata-rata 24 131 24 136.3333 133.6666 Oktober, 2004 penjualan Sep Sm. Rata-rata 133.6666 Agustus 2004 Sm. Rata-rata 22 140 140 September Sm. Rata-rata 23 131 13 140 134 Oktober Sm. Rata-rata 24 114 24 134 124 November, 2004 penjualan Sep Sm. Rata-rata 124 September 2004 Sm. Rata-rata 22 131 131 Oktober Sm. Rata-rata 23 114 13 131 119.6666 November Sm. Rata-rata 24 119 24 119.6666 119.3333 Desember 2004 penjualan Sep Sm. Rata-rata 119.3333 A.13.3 Persen Perhitungan Akurasi POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Perhitungan Deviasi Absolut Mutual MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Metode 12 - Eksploitasi Eksponensial Dengan Trend dan Seasonality Metode ini mirip dengan Metode 11, Eksponensial Smoothing dengan rata-rata penghalusan dihitung. Namun, Metode 12 juga mencakup sebuah istilah dalam persamaan peramalan untuk menghitung tren yang merapikan. Perkiraan tersebut terdiri dari rata-rata merapikan yang disesuaikan dengan tren linier. Bila ditentukan dalam opsi pengolahan, ramalan juga disesuaikan untuk musiman. Sebuah konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai yang valid untuk rentang alfa dari 0 sampai 1. b konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk komponen tren perkiraan. Nilai yang valid untuk rentang beta dari 0 sampai 1. Apakah indeks musiman diterapkan pada perkiraan a dan b adalah independen satu sama lain. Mereka tidak perlu menambahkan ke 1.0. Riwayat penjualan minimum wajib: dua tahun ditambah jumlah periode waktu yang dibutuhkan untuk mengevaluasi kinerja perkiraan (PBF). Metode 12 menggunakan dua persamaan pemulusan eksponensial dan satu rata-rata sederhana untuk menghitung rata-rata merapikan, tren merapikan, dan faktor musiman rata-rata sederhana. A.14.1 Prakiraan Perhitungan A) Rata-rata MAD yang merata secara eksponensial (122,81 - 114 133,14 - 119 135,33 - 137) 3 8.2 A.15 Mengevaluasi Prakiraan Anda dapat memilih metode peramalan untuk menghasilkan sebanyak dua belas perkiraan untuk setiap produk. Setiap metode peramalan mungkin akan menghasilkan proyeksi yang sedikit berbeda. Bila ribuan produk diperkirakan, tidak praktis membuat keputusan subyektif mengenai prakiraan mana yang akan digunakan dalam rencana Anda untuk setiap produk. Sistem secara otomatis mengevaluasi kinerja masing-masing metode peramalan yang Anda pilih, dan untuk setiap perkiraan produk. Anda dapat memilih antara dua kriteria kinerja, Mean Absolute Deviation (MAD) dan Persen Ketelitian (POA). MAD adalah ukuran kesalahan perkiraan. POA adalah ukuran prakiraan bias. Kedua teknik evaluasi kinerja ini memerlukan data riwayat penjualan aktual untuk jangka waktu pengguna tertentu. Periode sejarah terakhir ini disebut periode holdout atau periode yang paling sesuai (PBF). Untuk mengukur kinerja metode peramalan, gunakan rumus perkiraan untuk mensimulasikan perkiraan periode penyimpanan historis. Biasanya akan ada perbedaan antara data penjualan aktual dan perkiraan simulasi untuk periode holdout. Bila beberapa metode perkiraan dipilih, proses yang sama terjadi untuk setiap metode. Beberapa prakiraan dihitung untuk periode holdout, dan dibandingkan dengan riwayat penjualan yang diketahui untuk periode waktu yang sama. Metode peramalan yang menghasilkan kecocokan terbaik (paling sesuai) antara perkiraan dan penjualan aktual selama periode holdout direkomendasikan untuk digunakan dalam rencana Anda. Rekomendasi ini khusus untuk setiap produk, dan mungkin berubah dari satu perkiraan generasi ke generasi berikutnya. A.16 Mean Absolute Deviation (MAD) MAD adalah mean (atau rata-rata) dari nilai absolut (atau besarnya) dari penyimpangan (atau kesalahan) antara data aktual dan perkiraan. MAD adalah ukuran dari besaran rata-rata kesalahan yang diharapkan, dengan metode peramalan dan riwayat data. Karena nilai absolut yang digunakan dalam perhitungan, kesalahan positif tidak membatalkan kesalahan negatif. Saat membandingkan beberapa metode peramalan, yang memiliki MAD terkecil telah terbukti paling andal untuk produk tersebut selama periode holdout tersebut. Bila perkiraan tidak bias dan kesalahan terdistribusi normal, ada hubungan matematis sederhana antara MAD dan dua ukuran distribusi umum lainnya, standar deviasi dan Mean Squared Error: A.16.1 Persen Ketelitian (POA) Persen Ketelitian (POA) adalah Ukuran prakiraan bias. Bila prakiraan konsisten terlalu tinggi, persediaan terakumulasi dan biaya persediaan meningkat. Bila perkiraan secara konsisten dua rendah, persediaan dikonsumsi dan penurunan layanan pelanggan. Sebuah perkiraan yang 10 unit terlalu rendah, maka 8 unit terlalu tinggi, maka 2 unit terlalu tinggi, akan menjadi perkiraan yang tidak bias. Kesalahan positif 10 dibatalkan oleh kesalahan negatif 8 dan 2. Kesalahan Aktual - Ramalan Bila produk dapat disimpan dalam persediaan, dan bila perkiraan tidak bias, sejumlah kecil stok pengaman dapat digunakan untuk menyangga kesalahan. Dalam situasi ini, tidak begitu penting untuk menghilangkan kesalahan perkiraan karena menghasilkan perkiraan yang tidak bias. Namun dalam industri jasa, situasi di atas akan dipandang sebagai tiga kesalahan. Layanan akan kekurangan pada periode pertama, kemudian overstaffed untuk dua periode berikutnya. Dalam layanan, besarnya kesalahan perkiraan biasanya lebih penting daripada perkiraan bias. Penjumlahan selama periode holdout memungkinkan kesalahan positif untuk membatalkan kesalahan negatif. Bila total penjualan aktual melebihi total perkiraan penjualan, rasionya lebih besar dari 100. Tentu saja, tidak mungkin lebih dari 100 akurat. Bila perkiraan tidak bias, rasio POA akan menjadi 100. Oleh karena itu, lebih diharapkan 95 akurat daripada akurat. Kriteria POA memilih metode peramalan yang memiliki rasio POA paling mendekati 100. Skrip pada halaman ini meningkatkan navigasi konten, namun tidak mengubah konten dengan cara apa pun.
Trading-dengan-pilihan-tip
Options-trading-workshop