Pindah-rata-rata-lambda

Pindah-rata-rata-lambda

Ninjatrader-trading-system
Option-trading-sinclair
Online-trading-journal-software


Insentif-stock-options-in-llc Optimal-dinamis-trading-strategy-with-risk-limits Sinyal perdagangan spot Moving-average-linq Id-sistem-forex-club Stock-options-quit-job

Pendekatan EWMA memiliki satu fitur menarik: memerlukan sedikit data tersimpan. Untuk memperbarui perkiraan kami, kami hanya memerlukan perkiraan sebelumnya tentang tingkat varians dan nilai pengamatan terbaru. Tujuan sekunder dari EWMA adalah untuk melacak perubahan volatilitas. Untuk nilai kecil, observasi terakhir akan mempengaruhi perkiraan tersebut secara cepat. Untuk nilai yang mendekati satu, perkiraan akan berubah secara perlahan berdasarkan perubahan terkini pada variabel yang mendasari. Database RiskMetrics (diproduksi oleh JP Morgan dan tersedia untuk umum) menggunakan EWMA untuk memperbarui volatilitas harian. PENTING: Rumus EWMA tidak mengasumsikan tingkat varians jangka panjang yang panjang. Dengan demikian, konsep volatilitas mean reversion tidak tertangkap oleh EWMA. Model ARCHGARCH lebih cocok untuk tujuan ini. Tujuan sekunder dari EWMA adalah untuk melacak perubahan volatilitas, sehingga untuk nilai kecil, pengamatan baru-baru ini akan mempengaruhi estimasi tersebut segera, dan untuk nilai mendekati satu, perkiraan tersebut berubah secara perlahan terhadap perubahan terbaru pada tingkat pengembalian variabel yang mendasarinya. Database RiskMetrics (diproduksi oleh JP Morgan) dan dipublikasikan pada tahun 1994, menggunakan model EWMA untuk memperbarui perkiraan volatilitas harian. Perusahaan menemukan bahwa di berbagai variabel pasar, nilai ini memberikan perkiraan varians yang paling dekat dengan tingkat varians yang terwujud. Tingkat varians yang direalisasikan pada hari tertentu dihitung sebagai rata-rata tertimbang rata-rata pada 25 hari berikutnya. Demikian pula, untuk menghitung nilai optimal lambda untuk kumpulan data kami, kita perlu menghitung volatilitas yang direalisasikan pada setiap titik. Ada beberapa metode, jadi pilih satu. Selanjutnya, hitung jumlah kuadrat kesalahan (SSE) antara perkiraan EWMA dan volatilitas yang terealisasi. Akhirnya, minimalkan SSE dengan memvariasikan nilai lambda. Kedengarannya sederhana. Tantangan terbesar adalah menyetujui algoritma untuk menghitung volatilitas yang terealisasi. Misalnya, orang-orang di RiskMetrics memilih 25 hari berikutnya untuk menghitung tingkat varians realisasi. Dalam kasus Anda, Anda dapat memilih algoritma yang menggunakan harga Daily Volume, HILO andor OPEN-CLOSE. Q 1: Dapatkah kita menggunakan EWMA untuk memperkirakan (atau memperkirakan) volatilitas lebih dari satu langkah di depan Representasi volatilitas EWMA tidak mengasumsikan fluktuasi rata-rata jangka panjang, dan dengan demikian, untuk perkiraan horizon di luar satu langkah, EWMA mengembalikan sebuah konstanta Nilai: Menjelajahi Nilai Rata-rata Bergerak Tertimbang Eksponensial Volatilitas adalah ukuran risiko yang paling umum, namun ada dalam beberapa rasa. Dalam artikel sebelumnya, kami menunjukkan bagaimana cara menghitung volatilitas historis sederhana. (Untuk membaca artikel ini, lihat Menggunakan Volatilitas untuk Mengukur Risiko Masa Depan.) Kami menggunakan data harga saham Googles aktual untuk menghitung volatilitas harian berdasarkan data stok 30 hari. Pada artikel ini, kami akan memperbaiki volatilitas sederhana dan mendiskusikan rata-rata bergerak tertimbang eksponensial (eksploitatif bergerak rata-rata) (EWMA). Sejarah Vs. Volatilitas Tersirat Pertama, mari kita letakkan metrik ini menjadi sedikit perspektif. Ada dua pendekatan yang luas: volatilitas historis dan tersirat (atau implisit). Pendekatan historis mengasumsikan bahwa masa lalu adalah prolog kita mengukur sejarah dengan harapan itu bersifat prediktif. Sebaliknya volatilitas tersirat, mengabaikan sejarah yang dipecahkannya untuk volatilitas yang tersirat oleh harga pasar. Ia berharap bahwa pasar tahu yang terbaik dan harga pasar mengandung, bahkan secara implisit, merupakan perkiraan konsensus volatilitas. (Untuk pembacaan yang terkait, lihat Kegunaan dan Batas Volatilitasnya.) Jika kita berfokus hanya pada tiga pendekatan historis (di sebelah kiri di atas), mereka memiliki dua kesamaan: Hitunglah serangkaian pengembalian periodik Terapkan skema pembobotan Pertama, kita Hitung kembali periodik. Itu biasanya serangkaian pengembalian harian dimana masing-masing imbal hasil dinyatakan dalam istilah yang terus bertambah. Untuk setiap hari, kita mengambil log natural dari rasio harga saham (yaitu harga hari ini dibagi dengan harga kemarin, dan seterusnya). Ini menghasilkan serangkaian pengembalian harian, dari u i sampai u i-m. Tergantung berapa hari (m hari) yang kita ukur. Itu membawa kita pada langkah kedua: Di sinilah ketiga pendekatan berbeda. Pada artikel sebelumnya (Menggunakan Volatilitas Untuk Mengukur Risiko Masa Depan), kami menunjukkan bahwa di bawah beberapa penyederhanaan yang dapat diterima, varians sederhana adalah rata-rata pengembalian kuadrat: Perhatikan bahwa jumlah ini masing-masing dari pengembalian periodik, kemudian dibagi total oleh Jumlah hari atau pengamatan (m). Jadi, yang benar-benar hanya rata-rata kuadrat periodik kembali. Dengan kata lain, setiap kuadrat kembali diberi bobot yang sama. Jadi, jika alfa (a) adalah faktor pembobotan (khusus, 1m), maka varians sederhana terlihat seperti ini: EWMA Meningkatkan Varians Sederhana Kelemahan pendekatan ini adalah bahwa semua pengembalian mendapatkan bobot yang sama. Kembali ke masa lalu (sangat baru) tidak berpengaruh lagi terhadap varians daripada return bulan lalu. Masalah ini diperbaiki dengan menggunakan rata-rata pergerakan rata-rata tertimbang eksponensial (EWMA), di mana hasil yang lebih baru memiliki bobot lebih besar pada variansnya. Rata-rata pergerakan tertimbang eksponensial (EWMA) memperkenalkan lambda. Yang disebut parameter smoothing. Lambda harus kurang dari satu. Dengan kondisi seperti itu, daripada bobot yang sama, setiap kuadrat kembali dibobot oleh pengganda sebagai berikut: Misalnya, RiskMetrics TM, perusahaan manajemen risiko keuangan, cenderung menggunakan lambda 0,94, atau 94. Dalam kasus ini, yang pertama ( Paling akhir) kuadrat periodik kembali ditimbang oleh (1-0.94) (94) 0 6. Kuadrat berikutnya kembali hanyalah lambda-kelipatan dari berat sebelumnya dalam kasus ini 6 dikalikan 94 5.64. Dan hari ketiga berat sama dengan (1-0.94) (0.94) 2 5.30. Itulah makna eksponensial dalam EWMA: setiap bobot adalah pengganda konstan (yaitu lambda, yang harus kurang dari satu) dari berat hari sebelumnya. Hal ini memastikan varians yang berbobot atau bias terhadap data yang lebih baru. (Untuk mempelajari lebih lanjut, lihat Lembar Kerja Excel untuk Volatilitas Google). Perbedaan antara sekadar volatilitas dan EWMA untuk Google ditunjukkan di bawah ini. Volatilitas sederhana secara efektif membebani masing-masing dan setiap pengembalian periodik sebesar 0,1996 seperti yang ditunjukkan pada Kolom O (kami memiliki data harga saham dua tahun. Itu adalah 509 pengembalian harian dan 1509 0,1996). Tapi perhatikan bahwa Kolom P memberi bobot 6, lalu 5.64, lalu 5.3 dan seterusnya. Itulah satu-satunya perbedaan antara varians sederhana dan EWMA. Ingat: Setelah kita menghitung keseluruhan rangkaian (di Kolom Q), kita memiliki varians, yang merupakan kuadrat dari standar deviasi. Jika kita ingin volatilitas, kita perlu ingat untuk mengambil akar kuadrat varians itu. Apa perbedaan dalam volatilitas harian antara varians dan EWMA dalam kasus Googles Its signifikan: Variance sederhana memberi kita volatilitas harian sebesar 2,4 namun EWMA memberikan volatilitas harian hanya 1,4 (lihat spreadsheet untuk rinciannya). Rupanya, volatilitas Googles baru saja turun, oleh karena itu, varians sederhana mungkin sangat tinggi secara artifisial. Todays Varians Adalah Fungsi Varian Jurus Hari Ini, kami akan mempertimbangkan untuk menghitung deretan berat badan yang menurun secara eksponensial. Kami tidak akan melakukan matematika di sini, tapi salah satu fitur terbaik dari EWMA adalah keseluruhan rangkaian mudah direduksi menjadi formula rekursif: Rekursif berarti referensi varians hari ini (yaitu fungsi varians hari sebelumnya). Anda dapat menemukan formula ini di dalam spreadsheet juga, dan menghasilkan hasil yang sama persis dengan perhitungan longhand yang dikatakan: Variasi hari ini (di bawah EWMA) sama dengan varians kemarin (tertimbang oleh lambda) ditambah kembalinya kuadran kemarin (ditimbang oleh satu minus lambda). Perhatikan bagaimana kita hanya menambahkan dua istilah bersama: varians berbobot kemarin dan kemarin berbobot, kuadrat kembali. Meski begitu, lambda adalah parameter penghalusan kita. Lambda yang lebih tinggi (misalnya RiskMetrics 94) mengindikasikan peluruhan lambat dalam rangkaian - secara relatif, kita akan memiliki lebih banyak titik data dalam rangkaian dan akan jatuh lebih lambat. Di sisi lain, jika kita mengurangi lambda, kita mengindikasikan peluruhan yang lebih tinggi: bobotnya akan jatuh lebih cepat dan, sebagai akibat langsung dari pembusukan yang cepat, lebih sedikit titik data yang digunakan. (Dalam spreadsheet, lambda adalah masukan, jadi Anda bisa bereksperimen dengan sensitivitasnya). Ringkasan Volatilitas adalah deviasi standar instan dari stok dan metrik risiko yang paling umum. Ini juga merupakan akar kuadrat dari varians. Kita dapat mengukur varians secara historis atau implisit (volatilitas tersirat). Saat mengukur secara historis, metode termudah adalah varians sederhana. Tapi kelemahan dengan varians sederhana adalah semua kembali mendapatkan bobot yang sama. Jadi kita menghadapi trade-off klasik: kita selalu menginginkan lebih banyak data tapi semakin banyak data yang kita miliki, semakin banyak perhitungan kita yang terdilusi oleh data yang jauh (kurang relevan). Rata-rata pergerakan tertimbang eksponensial (EWMA) meningkat dengan varians sederhana dengan menetapkan bobot pada return periodik. Dengan melakukan ini, kita berdua bisa menggunakan ukuran sampel yang besar namun juga memberi bobot lebih besar pada hasil yang lebih baru. (Untuk melihat tutorial film tentang topik ini, kunjungi Penyu Bionik.) Hitung Volatilitas Historis Menggunakan EWMA Volatility adalah ukuran risiko yang paling umum digunakan. Volatilitas dalam pengertian ini dapat berupa volatilitas historis (yang diamati dari data masa lalu), atau dapat menyebabkan volatilitas (diamati dari harga pasar instrumen keuangan). Volatilitas historis dapat dihitung dalam tiga cara, yaitu: Volatilitas sederhana, Eksponen Tertimbang Tertimbang Rata-rata (EWMA) GARCH Salah satu keuntungan utama EWMA adalah memberi bobot lebih pada pengembalian baru-baru ini sambil menghitung imbal hasil. Pada artikel ini, kita akan melihat bagaimana volatilitas dihitung dengan menggunakan EWMA. Jadi, mari kita mulai: Langkah 1: Hitung hasil log dari seri harga Jika kita melihat harga saham, kita dapat menghitung return lognormal harian, dengan menggunakan rumus ln (P i P i -1), di mana P mewakili masing-masing Hari penutupan harga saham Kita perlu menggunakan log alami karena kita ingin hasilnya terus digabungkan. Kami sekarang akan memiliki pengembalian harian untuk keseluruhan seri harga. Langkah 2: Persegi kembalinya Langkah selanjutnya adalah mengambil kuadrat pengembalian yang panjang. Ini sebenarnya adalah perhitungan varians sederhana atau volatilitas yang ditunjukkan oleh rumus berikut: Di sini, u mewakili tingkat pengembalian, dan m mewakili jumlah hari. Langkah 3: Tetapkan bobot Tentukan bobot sedemikian rupa sehingga hasil akhir-akhir ini memiliki bobot lebih tinggi dan hasil yang lebih tua memiliki berat lebih rendah. Untuk ini kita memerlukan faktor yang disebut Lambda (), yaitu konstanta pemulusan atau parameter persisten. Bobot diberikan sebagai (1-) 0. Lambda harus kurang dari 1. Metrik risiko menggunakan lambda 94. Bobot pertama adalah (1-0.94) 6, berat kedua adalah 60,94 5,64 dan seterusnya. Di EWMA semua jumlah bobotnya menjadi 1, namun harganya menurun dengan rasio konstan. Langkah 4: Multiply Returns-kuadratkan dengan bobot Langkah 5: Ambillah penjumlahan R 2 w Inilah varian akhir EWMA. Volatilitasnya akan menjadi akar kuadrat dari varians. Berikut screenshot menunjukkan perhitungannya. Contoh di atas yang kami lihat adalah pendekatan yang dijelaskan oleh RiskMetrics. Bentuk umum EWMA dapat direpresentasikan sebagai rumus rekursif berikut:
Stock-options-letter-template
Td-ameritrade-binary-options