Pindah-rata-rata-selalu-stasioner

Pindah-rata-rata-selalu-stasioner

Kb-forex-management
Top-biner-options-companies
Swing-trading-with-options


Online-trading-academy-cd-reviews Online-trading-platform-tutorial GFT-forex-trading-hours Trade-options-in-extended-hours Satu jam trading-system-review Tertimbang-bergerak-rata-rata-java-code

4.2 Model Linear Stationary untuk Seri Waktu dimana variabel acak disebut inovasi karena merupakan bagian dari variabel teramati yang tidak dapat diprediksi mengingat nilai masa lalu. Model umum (4.4) mengasumsikan bahwa adalah keluaran dari filter linier yang mengubah inovasi masa lalu, yaitu proses linier. Asumsi linearitas ini didasarkan pada teorema dekomposisi Wolds (Wold 1938) yang mengatakan bahwa setiap proses kovarian diskrit diskrit dapat dinyatakan sebagai jumlah dari dua proses yang tidak berkorelasi, di mana hanya deterministik murni dan merupakan proses yang murni tidak pasti yang dapat ditulis sebagai garis lurus Jumlah proses inovasi: di mana urutan variabel acak tidak berkorelasi serentak dengan mean nol dan varians umum. Kondisi ini diperlukan untuk stationarity. Formulasi (4.4) adalah reparametrizasi terbatas dari representasi tak terbatas (4.5) - (4.6) dengan konstan. Biasanya ditulis dalam istilah operator lag yang didefinisikan oleh, yang memberikan ekspresi pendek: di mana polinomial operator lag dan disebut polinomial dan polinomialnya masing-masing. Untuk menghindari redundansi parameter, kami berasumsi bahwa tidak ada faktor umum antara komponen dan komponen. Selanjutnya, kita akan mempelajari plot dari beberapa seri waktu yang dihasilkan oleh model stasioner dengan tujuan untuk menentukan pola utama evolusi temporal mereka. Gambar 4.2 mencakup dua seri yang dihasilkan dari proses stasioner berikut yang dihitung dengan menggunakan kuantum genarma: Gambar 4.2: Seri waktu yang dihasilkan oleh model Seperti yang diharapkan, kedua deret waktu bergerak di sekitar tingkat konstan tanpa perubahan varians karena properti stasioner. Selain itu, tingkat ini mendekati rata-rata teoritis proses,, dan jarak masing-masing titik ke nilai ini sangat jarang berada di luar batas. Selanjutnya, evolusi rangkaian menunjukkan keberangkatan lokal dari mean proses, yang dikenal sebagai perilaku pengembalian rata-rata yang menjadi ciri rangkaian waktu stasioner. Mari kita pelajari dengan beberapa detail sifat dari berbagai proses, khususnya, fungsi autocovariance yang menangkap sifat dinamis dari proses stasioner stochastic. Fungsi ini bergantung pada satuan ukuran, sehingga ukuran biasa dari derajat linearitas antar variabel adalah koefisien korelasi. Dalam kasus proses stasioner, koefisien autokorelasi pada lag, dilambangkan dengan, didefinisikan sebagai korelasi antara dan: Dengan demikian, fungsi autokorelasi (ACF) adalah fungsi autokovarisi yang diparalelkan dengan variansnya. Sifat ACF adalah: Dengan adanya properti simetri (4.10), ACF biasanya diwakili dengan grafik batang pada kelambatan nonnegatif yang disebut correlogram sederhana. Alat lain yang berguna untuk menggambarkan dinamika proses stasioner adalah fungsi autokorelasi parsial (PACF). Koefisien autokorelasi parsial pada lag mengukur hubungan linier antara dan disesuaikan dengan efek nilai intermediate. Oleh karena itu, hanya koefisien pada model regresi linier: Sifat-sifat PACF setara dengan ACF (4.8) - (4.10) dan mudah untuk membuktikannya (Kotak dan Jenkins 1976). Seperti halnya ACF, fungsi autokorelasi parsial tidak bergantung pada satuan ukuran dan diwakili dengan grafik batang pada kelambatan nonnegatif yang disebut correlogram parsial. Sifat dinamik dari setiap model stasioner menentukan bentuk korelogram tertentu. Selain itu, dapat ditunjukkan bahwa, untuk setiap proses stasioner, kedua fungsi, ACF dan PACF, mendekati nol karena lag cenderung tidak terbatas. Model tidak selalu proses stasioner, jadi pertama-tama perlu ditentukan kondisi stasionerasinya. Ada subclass model yang memiliki sifat khusus sehingga kita akan mempelajarinya secara terpisah. Jadi, kapan dan, ini adalah proses white noise. Kapan, itu adalah proses rata-rata murni bergerak order. , Dan saat itu adalah proses pemesanan autoregresif murni. . 4.2.1 Proses Kebisingan Putih Model yang paling sederhana adalah proses white noise, di mana urutan variabel nol tidak berkorelasi nol dengan varians konstan. Hal ini dilambangkan dengan. Proses ini diam jika variansnya terbatas,, karena mengingat bahwa: memverifikasi kondisi (4.1) - (4.3). Selain itu, tidak berkorelasi dari waktu ke waktu, fungsi autocovariance-nya adalah: Gambar 4.7 menunjukkan dua seri waktu simulasi yang dihasilkan dari proses dengan mean nol dan parameter dan -0,7. Parameter autoregresif mengukur ketekunan peristiwa masa lalu ke nilai saat ini. Misalnya, jika, kejutan positif (atau negatif) mempengaruhi positif (atau negatif) untuk jangka waktu yang lebih lama maka nilai lebih besar. Bila, seri bergerak lebih kasar sekitar rata-rata karena alternasi arah pengaruh, yaitu kejutan yang mempengaruhi secara positif pada saat ini, memiliki efek negatif terhadap, positif masuk. Prosesnya selalu dapat dibalik dan bersifat stasioner ketika parameter model dibatasi untuk berada di wilayah tersebut. Untuk membuktikan kondisi stasioner, pertama kita menulis dalam bentuk rata-rata bergerak dengan substitusi rekursif pada (4.14): Gambar 4.8: Korelasi populasi untuk proses Yaitu, adalah jumlah tertimbang dari inovasi masa lalu. Bobot bergantung pada nilai parameter: kapan, (atau), pengaruh inovasi yang diberikan meningkat (atau menurun) sepanjang waktu. Mengambil harapan untuk (4.15) untuk menghitung mean dari proses, kita mendapatkan: Mengingat bahwa, hasilnya adalah jumlah dari istilah tak terbatas yang konvergen untuk semua nilai hanya jika, dalam hal ini. Masalah serupa muncul saat kita menghitung momen kedua. Buktinya bisa disederhanakan dengan asumsi itu, yaitu,. Kemudian, variansnya adalah: Sekali lagi, variansnya mencapai tak terbatas kecuali, dalam hal ini. Mudah untuk memverifikasi bahwa rata-rata dan variansnya meledak saat kondisi itu tidak terjadi. Fungsi autocovariance dari proses stasioner Oleh karena itu, fungsi autokorelasi untuk model stasioner adalah: Yaitu, correlogram menunjukkan peluruhan eksponensial dengan nilai positif selalu jika positif dan dengan osilasi positif negatif jika negatif (lihat gambar 4.8). Selanjutnya, laju peluruhan menurun seiring kenaikan, sehingga semakin besar nilai korelasi dinamis yang semakin kuat dalam prosesnya. Akhirnya, ada cutoff dalam fungsi autokorelasi parsial pada lag pertama. Gambar 4.9: Korelasi Populasi untuk Proses Dapat ditunjukkan bahwa proses umum (Kotak dan Jenkins 1976): Adalah stasioner hanya jika akar dari persamaan karakteristik polinomial berada di luar lingkaran unit. Mean dari model stasioner adalah. Apakah selalu dapat dibalik untuk setiap nilai parameter. ACF akan menjadi nol secara eksponensial bila akarnya benar-benar atau dengan fluktuasi gelombang sinus-kosinus saat mereka kompleks. PACF memiliki cutoff pada lag, yaitu. Beberapa contoh dari Correlogram untuk model yang lebih kompleks, seperti, dapat dilihat pada gambar 4.9. Mereka sangat mirip dengan pola ketika proses berakar nyata, namun mengambil bentuk yang sangat berbeda saat akarnya sangat kompleks (lihat grafik grafis pertama pada gambar 4.9). 4.2.4 Model Rata-rata Bergerak Autoregresif Model pesanan rata-rata bergerak autoregresif general (finite-order), adalah: Memindahkan model pemulusan rata-rata dan eksponensial Sebagai langkah pertama dalam bergerak melampaui model mean, model jalan acak, dan model tren linier, nonseasonal Pola dan tren dapat diekstrapolasikan dengan menggunakan model rata-rata bergerak atau pemulusan. Asumsi dasar di balik model rata-rata dan perataan adalah bahwa deret waktu secara lokal bersifat stasioner dengan mean yang bervariasi secara perlahan. Oleh karena itu, kita mengambil rata-rata bergerak (lokal) untuk memperkirakan nilai rata-rata saat ini dan kemudian menggunakannya sebagai perkiraan untuk waktu dekat. Hal ini dapat dianggap sebagai kompromi antara model rata-rata dan model random-walk-without-drift-model. Strategi yang sama dapat digunakan untuk memperkirakan dan mengekstrapolasikan tren lokal. Rata-rata bergerak sering disebut versi quotsmoothedquot dari rangkaian aslinya karena rata-rata jangka pendek memiliki efek menghaluskan benjolan pada rangkaian aslinya. Dengan menyesuaikan tingkat perataan (lebar rata-rata bergerak), kita dapat berharap untuk mencapai keseimbangan optimal antara kinerja model jalan rata-rata dan acak. Jenis model rata-rata yang paling sederhana adalah. Rata-rata Bergerak Sederhana (rata-rata tertimbang): Perkiraan untuk nilai Y pada waktu t1 yang dilakukan pada waktu t sama dengan rata-rata sederhana dari pengamatan m terakhir: (Disini dan di tempat lain saya akan menggunakan simbol 8220Y-hat8221 untuk berdiri Untuk ramalan dari deret waktu yang dibuat Y pada tanggal sedini mungkin dengan model yang diberikan.) Rata-rata ini dipusatkan pada periode t- (m1) 2, yang menyiratkan bahwa perkiraan mean lokal cenderung tertinggal dari yang sebenarnya. Nilai mean lokal sekitar (m1) 2 periode. Jadi, kita katakan bahwa rata-rata usia data dalam rata-rata pergerakan sederhana adalah (m1) 2 relatif terhadap periode dimana ramalan dihitung: ini adalah jumlah waktu dimana perkiraan akan cenderung tertinggal dari titik balik data. . Misalnya, jika Anda rata-rata mendapatkan 5 nilai terakhir, prakiraan akan sekitar 3 periode terlambat dalam menanggapi titik balik. Perhatikan bahwa jika m1, model simple moving average (SMA) sama dengan model random walk (tanpa pertumbuhan). Jika m sangat besar (sebanding dengan panjang periode estimasi), model SMA setara dengan model rata-rata. Seperti parameter model peramalan lainnya, biasanya menyesuaikan nilai k untuk mendapatkan kuotil kuotil terbaik ke data, yaitu kesalahan perkiraan terkecil rata-rata. Berikut adalah contoh rangkaian yang tampaknya menunjukkan fluktuasi acak di sekitar rata-rata yang bervariasi secara perlahan. Pertama, mari mencoba menyesuaikannya dengan model jalan acak, yang setara dengan rata-rata bergerak sederhana dari 1 istilah: Model jalan acak merespons dengan sangat cepat terhadap perubahan dalam rangkaian, namun dengan begitu, ia memilih sebagian besar quot quotisequot di Data (fluktuasi acak) serta quotsignalquot (mean lokal). Jika kita mencoba rata-rata bergerak sederhana dari 5 istilah, kita mendapatkan perkiraan perkiraan yang lebih halus: Rata-rata pergerakan sederhana 5-langkah menghasilkan kesalahan yang jauh lebih kecil daripada model jalan acak dalam kasus ini. Usia rata-rata data dalam ramalan ini adalah 3 ((51) 2), sehingga cenderung tertinggal beberapa titik balik sekitar tiga periode. (Misalnya, penurunan tampaknya terjadi pada periode 21, namun prakiraan tidak berbalik sampai beberapa periode kemudian.) Perhatikan bahwa perkiraan jangka panjang dari model SMA adalah garis lurus horizontal, seperti pada pergerakan acak. model. Dengan demikian, model SMA mengasumsikan bahwa tidak ada kecenderungan dalam data. Namun, sedangkan prakiraan dari model jalan acak sama dengan nilai yang terakhir diamati, prakiraan dari model SMA sama dengan rata-rata tertimbang nilai terakhir. Batas kepercayaan yang dihitung oleh Statgraf untuk perkiraan jangka panjang rata-rata bergerak sederhana tidak semakin luas seiring dengan meningkatnya horizon peramalan. Ini jelas tidak benar Sayangnya, tidak ada teori statistik yang mendasari yang memberi tahu kita bagaimana interval kepercayaan harus melebar untuk model ini. Namun, tidak terlalu sulit untuk menghitung perkiraan empiris batas kepercayaan untuk perkiraan horizon yang lebih panjang. Misalnya, Anda bisa membuat spreadsheet di mana model SMA akan digunakan untuk meramalkan 2 langkah di depan, 3 langkah di depan, dan lain-lain dalam sampel data historis. Anda kemudian bisa menghitung penyimpangan standar sampel dari kesalahan pada setiap horison perkiraan, dan kemudian membangun interval kepercayaan untuk perkiraan jangka panjang dengan menambahkan dan mengurangi kelipatan dari deviasi standar yang sesuai. Jika kita mencoba rata-rata pergerakan sederhana 9-term, kita mendapatkan perkiraan yang lebih halus dan lebih banyak efek lagging: Usia rata-rata sekarang adalah 5 periode ((91) 2). Jika kita mengambil moving average 19-term, usia rata-rata meningkat menjadi 10: Perhatikan bahwa, memang, ramalannya sekarang tertinggal dari titik balik sekitar 10 periode. Jumlah smoothing yang terbaik untuk seri ini Berikut adalah tabel yang membandingkan statistik kesalahan mereka, juga termasuk rata-rata 3-rata: Model C, rata-rata bergerak 5-term, menghasilkan nilai RMSE terendah dengan margin kecil di atas 3 -term dan rata-rata 9-istilah, dan statistik lainnya hampir sama. Jadi, di antara model dengan statistik kesalahan yang sangat mirip, kita bisa memilih apakah kita lebih memilih sedikit responsif atau sedikit lebih kehalusan dalam ramalan. (Lihat ke atas halaman.) Browns Simple Exponential Smoothing (rata-rata bergerak rata-rata tertimbang) Model rata-rata bergerak sederhana yang dijelaskan di atas memiliki properti yang tidak diinginkan sehingga memperlakukan pengamatan terakhir secara sama dan sama sekali mengabaikan semua pengamatan sebelumnya. Secara intuitif, data masa lalu harus didiskontokan secara lebih bertahap - misalnya, pengamatan terbaru harus mendapatkan bobot sedikit lebih besar dari yang terakhir, dan yang ke-2 terakhir harus mendapatkan bobot sedikit lebih banyak dari yang ke-3 terakhir, dan Begitu seterusnya Model pemulusan eksponensial sederhana (SES) menyelesaikan hal ini. Misalkan 945 menunjukkan kuototmothing constantquot (angka antara 0 dan 1). Salah satu cara untuk menulis model adalah dengan menentukan rangkaian L yang mewakili tingkat saat ini (yaitu nilai rata-rata lokal) dari seri yang diperkirakan dari data sampai saat ini. Nilai L pada waktu t dihitung secara rekursif dari nilai sebelumnya seperti ini: Dengan demikian, nilai smoothed saat ini adalah interpolasi antara nilai smoothed sebelumnya dan pengamatan saat ini, di mana 945 mengendalikan kedekatan nilai interpolasi dengan yang paling baru. pengamatan. Perkiraan untuk periode berikutnya hanyalah nilai merapikan saat ini: Secara ekivalen, kita dapat mengekspresikan perkiraan berikutnya secara langsung dalam perkiraan sebelumnya dan pengamatan sebelumnya, dengan versi setara berikut. Pada versi pertama, ramalan tersebut merupakan interpolasi antara perkiraan sebelumnya dan pengamatan sebelumnya: Pada versi kedua, perkiraan berikutnya diperoleh dengan menyesuaikan perkiraan sebelumnya ke arah kesalahan sebelumnya dengan jumlah pecahan 945. adalah kesalahan yang dilakukan pada Waktu t. Pada versi ketiga, perkiraan tersebut adalah rata-rata bergerak tertimbang secara eksponensial (yaitu diskon) dengan faktor diskonto 1- 945: Versi perumusan rumus peramalan adalah yang paling mudah digunakan jika Anda menerapkan model pada spreadsheet: sesuai dengan Sel tunggal dan berisi referensi sel yang mengarah ke perkiraan sebelumnya, pengamatan sebelumnya, dan sel dimana nilai 945 disimpan. Perhatikan bahwa jika 945 1, model SES setara dengan model jalan acak (tanpa pertumbuhan). Jika 945 0, model SES setara dengan model rata-rata, dengan asumsi bahwa nilai smoothing pertama ditetapkan sama dengan mean. (Kembali ke atas halaman.) Usia rata-rata data dalam ramalan eksponensial sederhana adalah 1 945 relatif terhadap periode dimana ramalan dihitung. (Ini tidak seharusnya jelas, namun dengan mudah dapat ditunjukkan dengan mengevaluasi rangkaian tak terbatas.) Oleh karena itu, perkiraan rata-rata bergerak sederhana cenderung tertinggal dari titik balik sekitar 1 945 periode. Misalnya, bila 945 0,5 lag adalah 2 periode ketika 945 0,2 lag adalah 5 periode ketika 945 0,1 lag adalah 10 periode, dan seterusnya. Untuk usia rata-rata tertentu (yaitu jumlah lag), ramalan eksponensial eksponensial sederhana (SES) agak lebih unggul daripada ramalan rata-rata bergerak sederhana karena menempatkan bobot yang relatif lebih tinggi pada pengamatan terakhir - i. Ini sedikit lebih responsif terhadap perubahan yang terjadi di masa lalu. Sebagai contoh, model SMA dengan 9 istilah dan model SES dengan 945 0,2 keduanya memiliki usia rata-rata 5 untuk data dalam perkiraan mereka, namun model SES memberi bobot lebih besar pada 3 nilai terakhir daripada model SMA dan pada Pada saat yang sama, hal itu sama sekali tidak sesuai dengan nilai lebih dari 9 periode, seperti yang ditunjukkan pada tabel ini: Keuntungan penting lain dari model SES dibandingkan model SMA adalah model SES menggunakan parameter pemulusan yang terus menerus bervariasi, sehingga mudah dioptimalkan. Dengan menggunakan algoritma quotsolverquot untuk meminimalkan kesalahan kuadrat rata-rata. Nilai optimal 945 dalam model SES untuk seri ini ternyata adalah 0,2961, seperti yang ditunjukkan di sini: Usia rata-rata data dalam ramalan ini adalah 10.2961 3,4 periode, yang serupa dengan rata-rata pergerakan sederhana 6-istilah. Perkiraan jangka panjang dari model SES adalah garis lurus horisontal. Seperti pada model SMA dan model jalan acak tanpa pertumbuhan. Namun, perhatikan bahwa interval kepercayaan yang dihitung oleh Statgraphics sekarang berbeda dengan mode yang masuk akal, dan secara substansial lebih sempit daripada interval kepercayaan untuk model perjalanan acak. Model SES mengasumsikan bahwa seri ini agak dapat diprediksi daripada model acak berjalan. Model SES sebenarnya adalah kasus khusus model ARIMA. Sehingga teori statistik model ARIMA memberikan dasar yang kuat untuk menghitung interval kepercayaan untuk model SES. Secara khusus, model SES adalah model ARIMA dengan satu perbedaan nonseasonal, MA (1), dan tidak ada istilah konstan. Atau dikenal sebagai model quotARIMA (0,1,1) tanpa constantquot. Koefisien MA (1) pada model ARIMA sesuai dengan kuantitas 1- 945 pada model SES. Misalnya, jika Anda memasukkan model ARIMA (0,1,1) tanpa konstan pada rangkaian yang dianalisis di sini, koefisien MA (0) diperkirakan berubah menjadi 0,7029, yang hampir persis satu minus 0,2961. Hal ini dimungkinkan untuk menambahkan asumsi tren linier konstan non-nol ke model SES. Untuk melakukan ini, cukup tentukan model ARIMA dengan satu perbedaan nonseasonal dan MA (1) dengan konstan, yaitu model ARIMA (0,1,1) dengan konstan. Perkiraan jangka panjang kemudian akan memiliki tren yang sama dengan tren rata-rata yang diamati selama periode estimasi keseluruhan. Anda tidak dapat melakukan ini bersamaan dengan penyesuaian musiman, karena opsi penyesuaian musiman dinonaktifkan saat jenis model diatur ke ARIMA. Namun, Anda dapat menambahkan tren eksponensial jangka panjang yang konstan ke model pemulusan eksponensial sederhana (dengan atau tanpa penyesuaian musiman) dengan menggunakan opsi penyesuaian inflasi dalam prosedur Peramalan. Kecepatan quotinflationquot (persentase pertumbuhan) yang sesuai per periode dapat diperkirakan sebagai koefisien kemiringan dalam model tren linier yang sesuai dengan data yang terkait dengan transformasi logaritma alami, atau dapat didasarkan pada informasi independen lain mengenai prospek pertumbuhan jangka panjang. . (Kembali ke atas halaman.) Browns Linear (yaitu ganda) Exponential Smoothing Model SMA dan model SES mengasumsikan bahwa tidak ada kecenderungan jenis apapun dalam data (yang biasanya OK atau setidaknya tidak terlalu buruk selama 1- Prakiraan ke depan saat data relatif bising), dan mereka dapat dimodifikasi untuk menggabungkan tren linier konstan seperti yang ditunjukkan di atas. Bagaimana dengan tren jangka pendek Jika suatu seri menampilkan tingkat pertumbuhan atau pola siklus yang berbeda yang menonjol dengan jelas terhadap kebisingan, dan jika ada kebutuhan untuk meramalkan lebih dari 1 periode di depan, maka perkiraan tren lokal mungkin juga terjadi. sebuah isu. Model pemulusan eksponensial sederhana dapat digeneralisasi untuk mendapatkan model pemulusan eksponensial linear (LES) yang menghitung perkiraan lokal tingkat dan kecenderungan. Model tren waktu yang paling sederhana adalah model pemulusan eksponensial Browns linier, yang menggunakan dua seri penghalusan berbeda yang berpusat pada berbagai titik waktu. Rumus peramalan didasarkan pada ekstrapolasi garis melalui dua pusat. (Versi yang lebih canggih dari model ini, Holt8217s, dibahas di bawah ini.) Bentuk aljabar model pemulusan eksponensial linier Brown8217s, seperti model pemulusan eksponensial sederhana, dapat dinyatakan dalam sejumlah bentuk yang berbeda namun setara. Bentuk quotstandardquot model ini biasanya dinyatakan sebagai berikut: Misalkan S menunjukkan deretan sumbu tunggal yang diperoleh dengan menerapkan smoothing eksponensial sederhana ke seri Y. Artinya, nilai S pada periode t diberikan oleh: (Ingat, bahwa dengan sederhana Eksponensial smoothing, ini akan menjadi perkiraan untuk Y pada periode t1.) Kemudian, biarkan Squot menunjukkan seri merapikan ganda yang diperoleh dengan menerapkan perataan eksponensial sederhana (menggunakan yang sama 945) ke seri S: Akhirnya, perkiraan untuk Y tk. Untuk setiap kgt1, diberikan oleh: Ini menghasilkan e 1 0 (yaitu menipu sedikit, dan membiarkan perkiraan pertama sama dengan pengamatan pertama yang sebenarnya), dan e 2 Y 2 8211 Y 1. Setelah itu prakiraan dihasilkan dengan menggunakan persamaan di atas. Ini menghasilkan nilai pas yang sama seperti rumus berdasarkan S dan S jika yang terakhir dimulai dengan menggunakan S 1 S 1 Y 1. Versi model ini digunakan pada halaman berikutnya yang menggambarkan kombinasi pemulusan eksponensial dengan penyesuaian musiman. Model LES Linear Exponential Smoothing Brown8217s Ls menghitung perkiraan lokal tingkat dan tren dengan menghaluskan data baru-baru ini, namun kenyataan bahwa ia melakukannya dengan parameter pemulusan tunggal menempatkan batasan pada pola data yang dapat disesuaikan: tingkat dan tren Tidak diizinkan untuk bervariasi pada tingkat independen. Model LES Holt8217s membahas masalah ini dengan memasukkan dua konstanta pemulusan, satu untuk level dan satu untuk tren. Setiap saat, seperti pada model Brown8217s, ada perkiraan L t tingkat lokal dan perkiraan T t dari tren lokal. Di sini mereka dihitung secara rekursif dari nilai Y yang diamati pada waktu t dan perkiraan tingkat dan kecenderungan sebelumnya oleh dua persamaan yang menerapkan pemulusan eksponensial kepada mereka secara terpisah. Jika perkiraan tingkat dan tren pada waktu t-1 adalah L t82091 dan T t-1. Masing, maka perkiraan untuk Y tshy yang akan dilakukan pada waktu t-1 sama dengan L t-1 T t-1. Bila nilai aktual diamati, perkiraan tingkat yang diperbarui dihitung secara rekursif dengan menginterpolasi antara Y tshy dan ramalannya, L t-1 T t-1, dengan menggunakan bobot 945 dan 1- 945. Perubahan pada tingkat perkiraan, Yaitu L t 8209 L t82091. Dapat diartikan sebagai pengukuran yang bising pada tren pada waktu t. Perkiraan tren yang diperbarui kemudian dihitung secara rekursif dengan menginterpolasi antara L t 8209 L t82091 dan perkiraan sebelumnya dari tren, T t-1. Menggunakan bobot 946 dan 1-946: Interpretasi konstanta perataan tren 946 sama dengan konstanta pemulusan tingkat 945. Model dengan nilai kecil 946 beranggapan bahwa tren hanya berubah sangat lambat seiring berjalannya waktu, sementara model dengan Lebih besar 946 berasumsi bahwa itu berubah lebih cepat. Sebuah model dengan besar 946 percaya bahwa masa depan yang jauh sangat tidak pasti, karena kesalahan dalam estimasi tren menjadi sangat penting saat meramalkan lebih dari satu periode di masa depan. (Kembali ke atas halaman.) Konstanta pemulusan 945 dan 946 dapat diperkirakan dengan cara biasa dengan meminimalkan kesalahan kuadrat rata-rata dari perkiraan satu langkah ke depan. Bila ini dilakukan di Stategaf, perkiraannya adalah 945 0,3048 dan 946 0,008. Nilai yang sangat kecil dari 946 berarti bahwa model tersebut mengasumsikan perubahan sangat sedikit dalam tren dari satu periode ke periode berikutnya, jadi pada dasarnya model ini mencoba memperkirakan tren jangka panjang. Dengan analogi dengan pengertian umur rata-rata data yang digunakan dalam memperkirakan tingkat lokal seri, rata-rata usia data yang digunakan dalam memperkirakan tren lokal sebanding dengan 1 946, meskipun tidak sama persis dengan itu. . Dalam hal ini ternyata 10.006 125. Ini adalah jumlah yang sangat tepat karena keakuratan estimasi 946 tidak benar-benar ada 3 tempat desimal, namun urutannya sama besarnya dengan ukuran sampel 100, jadi Model ini rata-rata memiliki cukup banyak sejarah dalam memperkirakan tren. Plot perkiraan di bawah ini menunjukkan bahwa model LES memperkirakan tren lokal yang sedikit lebih besar di akhir rangkaian daripada tren konstan yang diperkirakan dalam model SEStrend. Juga, nilai estimasi 945 hampir sama dengan yang diperoleh dengan cara memasang model SES dengan atau tanpa tren, jadi model ini hampir sama. Sekarang, apakah ini terlihat seperti ramalan yang masuk akal untuk model yang seharusnya memperkirakan tren lokal Jika Anda memilih plot ini, sepertinya tren lokal telah berubah ke bawah pada akhir seri Apa yang telah terjadi Parameter model ini Telah diperkirakan dengan meminimalkan kesalahan kuadrat dari perkiraan satu langkah ke depan, bukan perkiraan jangka panjang, dalam hal ini tren tidak menghasilkan banyak perbedaan. Jika semua yang Anda lihat adalah kesalahan 1 langkah maju, Anda tidak melihat gambaran tren yang lebih besar mengenai (katakanlah) 10 atau 20 periode. Agar model ini lebih selaras dengan ekstrapolasi data bola mata kami, kami dapat secara manual menyesuaikan konstanta perataan tren sehingga menggunakan garis dasar yang lebih pendek untuk estimasi tren. Misalnya, jika kita memilih menetapkan 946 0,1, maka usia rata-rata data yang digunakan dalam memperkirakan tren lokal adalah 10 periode, yang berarti bahwa kita rata-rata mengalami trend selama 20 periode terakhir. Berikut ini perkiraan plot perkiraan jika kita menetapkan 946 0,1 sambil mempertahankan 945 0,3. Ini terlihat sangat masuk akal untuk seri ini, meskipun mungkin berbahaya untuk memperkirakan tren ini lebih dari 10 periode di masa depan. Bagaimana dengan statistik kesalahan Berikut adalah perbandingan model untuk kedua model yang ditunjukkan di atas dan juga tiga model SES. Nilai optimal 945. Untuk model SES adalah sekitar 0,3, namun hasil yang serupa (dengan sedikit atau kurang responsif, masing-masing) diperoleh dengan 0,5 dan 0,2. (A) Holts linear exp. Smoothing dengan alpha 0.3048 dan beta 0.008 (B) Holts linear exp. Smoothing dengan alpha 0.3 dan beta 0,1 (C) Smoothing eksponensial sederhana dengan alpha 0.5 (D) Smoothing eksponensial sederhana dengan alpha 0.3 (E) Smoothing eksponensial sederhana dengan alpha 0.2 Statistik mereka hampir identik, jadi kita benar-benar tidak dapat membuat pilihan berdasarkan dasar Kesalahan perkiraan 1 langkah di depan sampel data. Kita harus kembali pada pertimbangan lain. Jika kita sangat percaya bahwa masuk akal untuk mendasarkan perkiraan tren saat ini pada apa yang telah terjadi selama 20 periode terakhir, kita dapat membuat kasus untuk model LES dengan 945 0,3 dan 946 0,1. Jika kita ingin bersikap agnostik tentang apakah ada tren lokal, maka salah satu model SES mungkin akan lebih mudah dijelaskan dan juga akan memberikan prakiraan tengah jalan untuk periode 5 atau 10 berikutnya. (Apa yang dimaksud dengan tren-ekstrapolasi terbaik: Bukti empiris horizontal atau linier menunjukkan bahwa, jika data telah disesuaikan (jika perlu) untuk inflasi, maka mungkin tidak bijaksana untuk melakukan ekstrapolasi linier jangka pendek Tren sangat jauh ke depan. Tren yang terbukti hari ini dapat mengendur di masa depan karena beragam penyebabnya seperti keusangan produk, persaingan yang meningkat, dan kemerosotan siklis atau kenaikan di industri. Untuk alasan ini, smoothing eksponensial sederhana sering kali melakukan out-of-sample yang lebih baik daripada yang mungkin diharapkan, terlepas dari ekstrapolasi horisontal kuotometer. Modifikasi tren yang teredam dari model pemulusan eksponensial linier juga sering digunakan dalam praktik untuk memperkenalkan catatan konservatisme ke dalam proyeksi trennya. Model LES teredam-tren dapat diimplementasikan sebagai kasus khusus model ARIMA, khususnya model ARIMA (1,1,2). Ada kemungkinan untuk menghitung interval kepercayaan di sekitar perkiraan jangka panjang yang dihasilkan oleh model penghalusan eksponensial, dengan menganggapnya sebagai kasus khusus model ARIMA. (Hati-hati: tidak semua perangkat lunak menghitung interval kepercayaan untuk model ini dengan benar.) Lebar interval kepercayaan bergantung pada (i) kesalahan RMS pada model, (ii) jenis smoothing (sederhana atau linier) (iii) nilai (S) dari konstanta pemulusan (s) dan (iv) jumlah periode di depan yang Anda peramalkan. Secara umum, interval menyebar lebih cepat saat 945 semakin besar dalam model SES dan menyebar jauh lebih cepat bila perataan linier dan bukan perataan sederhana digunakan. Topik ini dibahas lebih lanjut di bagian model ARIMA dari catatan. (Kembali ke atas halaman.) Pengenalan Singkat tentang Seri Waktu Modern Definisi Suatu deret waktu adalah fungsi acak x t dari sebuah argumen t pada himpunan T. Dengan kata lain, deret waktu adalah keluarga dari variabel acak. X t-1 X t. X t1. Sesuai dengan semua elemen di himpunan T, di mana T seharusnya merupakan rangkaian tak terhitung dan tak terbatas. Definisi Suatu deret waktu yang teramati t t e T o T dianggap sebagai bagian dari satu realisasi fungsi acak x t. Satu set kemungkinan realisasi yang mungkin teramati disebut ansambel. Untuk menempatkan hal-hal lebih ketat, deret waktu (atau fungsi acak) adalah fungsi nyata x (w, t) dari dua variabel w dan t, dimana wW dan t T. Jika kita memperbaiki nilai w. Kita memiliki fungsi nyata x (t w) dari waktu t, yang merupakan realisasi deret waktu. Jika kita memperbaiki nilai t, maka kita memiliki variabel acak x (w t). Untuk suatu titik waktu tertentu ada distribusi probabilitas lebih dari x. Jadi fungsi acak x (w, t) dapat dianggap sebagai salah satu keluarga variabel acak atau sebagai keluarga realisasi. Definisi Kita mendefinisikan fungsi distribusi dari variabel acak dengan t 0 sebagai P o) x (x). Demikian pula kita dapat mendefinisikan distribusi bersama untuk n variabel acak Poin-poin yang membedakan analisis deret waktu dari analisis statistik biasa adalah sebagai berikut (1) Ketergantungan di antara pengamatan pada titik kronologis yang berbeda pada waktunya memainkan peran penting. Dengan kata lain, urutan pengamatan itu penting. Dalam analisis statistik biasa diasumsikan bahwa pengamatan saling independen. (2) Domain t tidak terbatas. (3) Kita harus membuat kesimpulan dari satu realisasi. Realisasi variabel acak dapat diamati hanya sekali pada setiap titik waktu. Dalam analisis multivariat kita memiliki banyak pengamatan terhadap sejumlah variabel yang terbatas. Perbedaan kritis ini mengharuskan asumsi adanya stasioneritas. Definisi Fungsi acak x t dikatakan benar-benar stasioner jika semua fungsi distribusi berdimensi hingga yang menentukan x t tetap sama bahkan jika keseluruhan kelompok titik t 1. T 2. T n bergeser sepanjang sumbu waktu. Artinya, jika untuk bilangan bulat t 1. T 2. T n dan k. Secara grafis, seseorang dapat membayangkan realisasi rangkaian stasioner yang ketat karena tidak hanya memiliki tingkat yang sama dalam dua interval yang berbeda, namun juga fungsi distribusi yang sama, sampai pada parameter yang menentukannya. Asumsi stasioneritas membuat hidup kita lebih sederhana dan lebih murah. Tanpa stasioneritas, kita harus sering mencicipi proses ini pada setiap titik waktu untuk membangun karakterisasi fungsi distribusi dalam definisi sebelumnya. Stationarity berarti bahwa kita dapat membatasi perhatian kita pada beberapa fungsi numerik yang paling sederhana, yaitu saat-saat distribusi. Saat-saat sentral diberikan oleh Definisi (i) Nilai rata-rata dari deret waktu t adalah momen orde pertama. (Ii) Fungsi autocovariance dari t adalah momen kedua tentang mean. Jika ts maka Anda memiliki varians x t. Kita akan menggunakan untuk menunjukkan autocovariance dari rangkaian stasioner, di mana k menunjukkan perbedaan antara t dan s. (Iii) Fungsi autokorelasi (ACF) t adalah Kami akan menggunakan untuk menunjukkan autokorelasi dari rangkaian stasioner, di mana k menunjukkan perbedaan antara t dan s. (Iv) autokorelasi parsial (PACF). F kk Adalah korelasi antara z t dan z tk setelah menghilangkan ketergantungan linier mereka pada variabel intervening z t1. Z t2 Z tk-1 Salah satu cara sederhana untuk menghitung autokorelasi parsial antara z t dan z tk adalah dengan menjalankan dua regresi kemudian menghitung korelasi antara dua vektor residual. Atau, setelah mengukur variabel sebagai penyimpangan dari meannya, autokorelasi parsial dapat ditemukan sebagai koefisien regresi LS pada z t pada model dimana titik di atas variabel menunjukkan bahwa itu diukur sebagai penyimpangan dari meannya. (V) Persamaan Yule-Walker memberikan hubungan penting antara autokorelasi parsial dan autokorelasi. Kalikan kedua sisi persamaan 10 dengan z tk-j dan ambillah ekspektasi. Operasi ini memberi kita persamaan perbedaan berikut dalam autocovariances atau, dalam hal autokorelasi Representasi yang tampaknya sederhana ini benar-benar merupakan hasil yang hebat. Yaitu untuk j1,2. K kita dapat menulis sistem persamaan penuh, yang dikenal sebagai persamaan Yule-Walker, Dari aljabar linier Anda tahu bahwa matriks r adalah pangkat penuh. Oleh karena itu dimungkinkan untuk menerapkan aturan Cramser berturut-turut untuk k1,2. Untuk memecahkan sistem autokorelasi parsial. Tiga yang pertama adalah Kami memiliki tiga hasil penting pada seri stasioner yang ketat. Implikasinya adalah kita bisa menggunakan realisasi berurutan dari urutan untuk memperkirakan mean. Kedua. Jika t benar-benar stasioner dan E t 2 lt maka Implikasinya adalah bahwa autocovariance hanya bergantung pada perbedaan antara t dan s, bukan kronologisnya pada waktunya. Kita bisa menggunakan sepasang interval dalam perhitungan autocovariance selama waktu di antara keduanya konstan. Dan kita bisa menggunakan realisasi data yang terbatas untuk memperkirakan autocovariances. Ketiga, fungsi autokorelasi dalam hal stasioneritas ketat diberikan oleh Implikasinya adalah bahwa autokorelasi hanya bergantung pada selisih antara t dan s juga, dan sekali lagi dapat diperkirakan dengan realisasi data yang terbatas. Jika tujuan kita adalah untuk memperkirakan parameter yang deskriptif tentang kemungkinan realisasi dari deret waktu, maka mungkin stasioneritasnya terlalu ketat. Misalnya, jika mean dan kovariansi x t konstan dan tidak bergantung pada titik kronologis, maka mungkin tidak penting bagi kita bahwa fungsi distribusi sama untuk interval waktu yang berbeda. Definisi Fungsi acak bersifat stasioner dalam arti luas (atau lemah stasioner, atau stasioner dalam pengertian Khinchin, atau stasioner kovarian) jika m 1 (t) m dan m 11 (t, s). Strukturalitas yang ketat tidak dengan sendirinya menyiratkan stasioneritas yang lemah. Lemahnya stasioneritas tidak menyiratkan stasioneritas yang ketat. Strukturalitas yang ketat dengan E t 2 ini berarti lemahnya stasioneritas. Teorema ergodik berkaitan dengan pertanyaan tentang kondisi yang diperlukan dan cukup untuk membuat kesimpulan dari satu realisasi deret waktu. Pada dasarnya, ini bermuara pada asumsi lemahnya stasioneritas. Teorema Jika t lemah stasioner dengan mean m dan fungsi kovariansi, maka untuk itu, untuk setiap gt 0 dan h gt 0 ada beberapa nomor T o sehingga untuk semua T gt T o. Jika dan hanya jika kondisi yang diperlukan dan memadai ini adalah bahwa autocovariances mati, dalam hal ini mean sampel adalah estimator yang konsisten untuk mean populasi. Konsekuensi Jika t lemah dengan E tk xt 2 lt untuk setiap t, dan E tk xtx tsk x ts tidak bergantung pada t untuk bilangan bulat apapun, maka jika dan hanya jika jika Konsekuensi dari konsekuensi sebenarnya adalah asumsi bahwa xtx tk adalah Lemah stasioner Teorema Ergodik tidak lebih dari sekedar hukum dalam jumlah besar bila pengamatannya berkorelasi. Orang mungkin bertanya pada saat ini tentang implikasi praktis dari stasioneritas. Penerapan teknik time series yang paling umum adalah pemodelan data makroekonomi, baik teori maupun atheoretik. Sebagai contoh yang pertama, seseorang mungkin memiliki model multiplier-accelerator. Agar model menjadi stasioner, parameter harus memiliki nilai tertentu. Uji model ini kemudian mengumpulkan data yang relevan dan memperkirakan parameternya. Jika perkiraan tidak konsisten dengan stasioneritas, maka seseorang harus memikirkan kembali model teoritis atau model statistik, atau keduanya. Kami sekarang memiliki cukup mesin untuk mulai berbicara tentang pemodelan data seri waktu univariat. Ada empat langkah dalam prosesnya. 1. Membangun model dari teori dan pengalaman pengetahuan 2. mengidentifikasi model berdasarkan data (seri yang diamati) 3. Memasangkan model (memperkirakan parameter model) 4. memeriksa model Jika pada langkah keempat kita tidak Puas kita kembali ke langkah pertama. Proses ini berulang sampai pemeriksaan lebih lanjut dan penilaian tidak menghasilkan perbaikan lebih lanjut dalam hasil. Diagramatik Definisi Beberapa operasi sederhana meliputi: Operator backshift Bx tx t-1 Operator depan Fx tx t1 Operator perbedaan 1 - B xtxt - x t-1 Operator perbedaan berperilaku dengan mode yang konsisten dengan konstanta dalam deret tak terbatas. . Artinya, kebalikannya adalah batas jumlah tak terbatas. Yaitu, -1 (1-B) -1 1 (1-B) 1BB 2. Operator gabungan S -1 Karena kebalikan dari operator perbedaan, operator gabungan berfungsi untuk menyusun penjumlahan. BANGUNAN MODEL Pada bagian ini kami menawarkan tinjauan singkat tentang model deret waktu yang paling umum. Berdasarkan pengetahuan tentang proses penghasil data, seseorang memilih kelas model untuk identifikasi dan estimasi dari kemungkinan yang mengikutinya. Definisi Misalkan Ex t m independen dari t. Model seperti dengan karakteristik disebut model autoregresif dari urutan p, AR (p). Definisi Jika suatu variabel dependen waktu (proses stokastik) t memenuhi maka t dikatakan memenuhi sifat Markov. Pada LHS, harapan dikondisikan pada sejarah tak terbatas x t. Di RHS itu dikondisikan hanya pada sebagian dari sejarah. Dari definisi tersebut, model AR (p) terlihat memuaskan properti Markov. Dengan menggunakan operator backshift kita dapat menulis model AR kita sebagai Teorema Suatu kondisi yang diperlukan dan cukup untuk model AR (p) menjadi stasioner adalah bahwa semua akar polinomial berada di luar lingkaran unit. Contoh 1 Perhatikan AR (1) Akar satunya dari 1 - f 1 B 0 adalah B 1 f 1. Kondisi untuk stationarity mensyaratkan hal itu. Jika kemudian seri yang diamati akan nampak sangat hingar bingar. Misalnya. Pertimbangkan di mana istilah white noise memiliki distribusi normal dengan mean nol dan varians dari satu. Hasil observasi beralih dengan hampir setiap pengamatan. Jika, di sisi lain, maka seri yang diamati akan jauh lebih mulus. Pada seri ini observasi cenderung berada di atas 0 jika pendahulunya berada di atas nol. Perbedaan dari e t adalah s e 2 untuk semua t. Varians dari x t. Bila sudah nol berarti, diberikan oleh Karena seri itu stasioner kita bisa menulis. Oleh karena itu, fungsi autocovariance dari rangkaian AR (1) adalah, seandainya tanpa kehilangan generalitas m 0 Untuk melihat seperti apa parameter AR ini, kita akan menggunakan fakta bahwa kita dapat menulis xt sebagai berikut Mengalikan dengan x Tk dan mengambil ekspektasi Perhatikan bahwa autocovariances mati saat k tumbuh. Fungsi autokorelasi adalah autocovariance dibagi dengan varians istilah white noise. Atau, . Dengan menggunakan formula Yule-Walker sebelumnya untuk autokorelasi parsial yang kita miliki Untuk AR (1) autokorelasi mati secara eksponensial dan autokorelasi parsial menunjukkan lonjakan pada satu lag dan nol setelahnya. Contoh 2 Perhatikan AR (2) Polinomial yang terkait pada operator lag adalah Akar dapat ditemukan dengan menggunakan rumus kuadrat. Akarnya adalah Bila akar itu nyata dan akibatnya seri akan menurun secara eksponensial sebagai respons terhadap kejutan. Bila akarnya rumit dan seri akan muncul sebagai gelombang tanda teredam. Teorema stasioneritas membebankan kondisi berikut pada koefisien AR Autocovariance untuk proses AR (2), dengan mean nol, Membagi melalui varians xt memberikan fungsi autokorelasi Karena kita dapat menulis serupa untuk autokorelasi kedua dan ketiga Yang lain Autokorelasi dipecahkan secara rekursif. Pola mereka diatur oleh akar persamaan diferensial linier orde kedua Jika akarnya nyata maka autokorelasi akan menurun secara eksponensial. Bila akarnya rumit, autokorelasi akan muncul sebagai gelombang sinus yang teredam. Dengan menggunakan persamaan Yule-Walker, autokorelasi parsial adalah Sekali lagi, autokorelasi mati perlahan. Autokorelasi parsial di sisi lain cukup khas. Ini memiliki lonjakan pada satu dan dua kelambatan dan nol setelahnya. Teorema Jika x t adalah proses AR (p) stasioner maka dapat dituliskan secara ekivalen sebagai model filter linier. Artinya, polinom di operator backshift bisa terbalik dan AR (p) ditulis sebagai moving average dari pesanan tak terbatas. Contoh Misalkan z t adalah proses AR (1) dengan mean nol. Apa yang benar untuk periode sekarang juga harus benar untuk periode sebelumnya. Jadi dengan substitusi rekursif kita dapat menulis Square kedua sisi dan mengambil ekspektasi sisi kanan lenyap seperti k sejak f lt 1. Oleh karena itu jumlah konvergen ke z t dalam mean kuadrat. Kita dapat menulis ulang model AR (p) sebagai filter linier yang kita tahu bersifat stasioner. Fungsi Autokorelasi dan Autokorelasi Parsial Umumnya Misalkan rangkaian stasioner z t dengan mean nol diketahui bersifat autoregresif. Fungsi autokorelasi AR (p) ditemukan dengan mengambil ekspektasi dan pembagian melalui varians z t Ini memberitahu kita bahwa r k adalah kombinasi linear dari autokorelasi sebelumnya. Kita bisa menggunakan ini dalam menerapkan aturan Cramster menjadi (i) dalam menyelesaikan fkk. Secara khusus kita dapat melihat bahwa ketergantungan linier ini akan menyebabkan f kk 0 untuk k gt p. Fitur khas dari seri autoregressive ini akan sangat berguna ketika menyangkut identifikasi seri yang tidak diketahui. Jika Anda memiliki MathCAD atau MathCAD Explorer maka Anda dapat melakukan eksperimen interactivley dengan beberapa ide AR (p) yang disajikan di sini. Model Bergerak Rata-rata Perhatikan model dinamis di mana rangkaian minat bergantung hanya pada beberapa bagian dari sejarah istilah white noise. Secara diagram ini mungkin digambarkan sebagai Definisi Misalkan t adalah urutan yang tidak berkorelasi dari i.i.d. Variabel acak dengan mean nol dan varians terbatas. Kemudian proses rata-rata order bergerak q, MA (q), diberikan oleh Teorema: Suatu proses rata-rata bergerak selalu stasioner. Bukti: Daripada memulai dengan bukti umum, kita akan melakukannya untuk kasus tertentu. Misalkan z t adalah MA (1). Kemudian . Tentu saja, t memiliki mean nol dan varian terbatas. Rata-rata z t selalu nol. Autocovariances akan diberikan oleh Anda dapat melihat bahwa mean dari variabel acak tidak bergantung pada waktu dengan cara apapun. Anda juga bisa melihat bahwa autocovariance hanya bergantung pada offset s, bukan di mana di seri yang kita mulai. Kita bisa membuktikan hasil yang sama lebih umum dengan memulai dengan, yang memiliki representasi rata-rata pergerakan alternatif. Pertimbangkan dulu varians dari z t. Dengan substitusi rekursif Anda dapat menunjukkan bahwa ini sama dengan jumlah yang kita ketahui sebagai rangkaian konvergen sehingga variansnya terbatas dan tidak tergantung waktu. Kovarians adalah, misalnya, Anda juga dapat melihat bahwa kovarian otomatis hanya bergantung pada titik relatif pada waktunya, bukan pada kronologis waktu. Kesimpulan kami dari semua ini adalah bahwa proses MA () tidak bergerak. Untuk general MA (q) proses fungsi autokorelasi diberikan oleh fungsi autokorelasi parsial akan mati dengan lancar. Anda dapat melihat ini dengan membalik proses untuk mendapatkan proses AR (). Jika Anda memiliki MathCAD atau MathCAD Explorer maka Anda dapat melakukan eksperimen secara interaktif dengan beberapa gagasan MA (q) yang disajikan di sini. Mixed Autoregressive - Moving Average Models Definition Misalkan t adalah urutan yang tidak berkorelasi dari i.i.d. Variabel acak dengan mean nol dan varians terbatas. Kemudian proses order rata-rata autoregresif, bergerak rata-rata (p, q), ARMA (p, q), yang diberikan oleh Akar operator autoregresif semuanya berada di luar lingkaran unit. Jumlah yang tidak diketahui adalah pq2. P dan q sudah jelas. 2 meliputi tingkat proses, m. Dan varians istilah white noise, sa 2. Misalkan kita menggabungkan representasi AR dan MA kita sehingga model dan koefisien dinormalisasi sehingga bo 1. Maka representasi ini disebut ARMA (p, q) jika Akar (1) semua terletak di luar lingkaran unit. Anggaplah bahwa y t diukur sebagai penyimpangan dari mean sehingga kita bisa menjatuhkan o. Maka fungsi autocovariance diturunkan dari jika jgtq maka istilah MA drop out dengan harapan memberi. Artinya, fungsi autocovariance terlihat seperti AR biasa untuk kelambatan setelah q mereka mati dengan lancar setelah q, tapi kita tidak bisa mengatakan bagaimana 1,2,133, Q akan terlihat Kita juga bisa memeriksa PACF untuk kelas model ini. Model dapat ditulis sebagai Kita dapat menulis ini sebagai proses MA (inf) yang menunjukkan bahwa PACF mati dengan perlahan. Dengan beberapa aritmatika, kita bisa menunjukkan bahwa ini terjadi hanya setelah lonjakan p pertama disumbang oleh bagian AR. Hukum Empiris Sebenarnya, rangkaian waktu stasioner dapat ditunjukkan oleh p 2 dan q 2. Jika bisnis Anda memberikan perkiraan yang baik terhadap kenyataan dan kebaikan yang sesuai adalah kriteria Anda, maka model yang hilang lebih disukai. Jika minat Anda adalah efisiensi prediktif maka model pelit itu lebih diutamakan. Bereksperimenlah dengan gagasan ARMA yang disajikan di atas dengan lembar kerja MathCAD. Autoregressive Mengintegrasikan Moving Average Model MA filter AR filter Mengintegrasikan filter Terkadang proses, atau seri, kita coba model tidak diam di level. Tapi itu mungkin diam di, katakanlah, perbedaan pertama. Artinya, dalam bentuk aslinya, autocovariances untuk serial ini mungkin tidak terlepas dari titik kronologisnya pada waktunya. Namun, jika kita membangun seri baru yang merupakan perbedaan pertama dari seri aslinya, seri baru ini memenuhi definisi stasioneritas. Hal ini sering terjadi pada data ekonomi yang sangat cenderung. Definisi Misalkan z t tidak stasioner, tapi z t - z t-1 memenuhi definisi stasioneritas. Juga, pada, istilah white noise memiliki mean dan varian yang terbatas. Kita bisa menulis model seperti ini dinamakan model ARIMA (p, d, q). P mengidentifikasi urutan operator AR, d mengidentifikasi daya. Q mengidentifikasi urutan operator MA. Jika akar f (B) berada di luar lingkaran satuan maka kita dapat menulis ulang ARIMA (p, d, q) sebagai filter linier. Yaitu. Itu bisa ditulis sebagai MA (). Kami menyimpan diskusi tentang pendeteksian akar unit untuk bagian lain dari catatan kuliah. Pertimbangkan sistem dinamis dengan x t sebagai rangkaian masukan dan y sebagai keluaran seri. Secara diagram kami memiliki Model-model ini adalah analogi diskrit dari persamaan diferensial linier. Kami menganggap hubungan berikut dimana b menunjukkan penundaan murni. Ingat itu (1-B). Dengan membuat substitusi ini model dapat dituliskan Jika koefisien polinomial pada y t dapat terbalik maka model dapat dituliskan sebagai V (B) dikenal sebagai fungsi respon impuls. Kita akan menemukan terminologi ini lagi dalam pembahasan vektor autoregresif kita nanti. Kointegrasi dan koreksi kesalahan model. IDENTIFIKASI MODEL Setelah memutuskan kelas model, seseorang harus mengidentifikasi urutan proses yang menghasilkan data. Artinya, seseorang harus membuat tebakan terbaik mengenai urutan proses AR dan MA yang mengemudikan seri stasioner. Seri stasioner benar-benar ditandai oleh mean dan autocovariances-nya. Untuk alasan analitis, biasanya kita bekerja dengan autokorelasi dan autokorelasi parsial. Dua alat dasar ini memiliki pola unik untuk proses AR dan MA stasioner. Seseorang dapat menghitung perkiraan sampel autokorelasi dan fungsi autokorelasi parsial dan membandingkannya dengan hasil tabulasi untuk model standar. Contoh Autocovariance Function Contoh Fungsi Autokorelasi Autokorelasi parsial sampel akan Menggunakan autokorelasi dan autokorelasi parsial cukup sederhana secara prinsip. Misalkan kita memiliki seri z t. Dengan mean nol, yaitu AR (1). Jika kita menjalankan regresi z t2 pada z t1 dan z t kita akan berharap untuk menemukan bahwa koefisien pada z t tidak berbeda dari nol karena autokorelasi parsial ini seharusnya nol. Di sisi lain, autokorelasi untuk seri ini seharusnya menurun secara eksponensial untuk meningkatkan kelambatan (lihat contoh AR (1) di atas). Misalkan seri itu benar-benar bergerak rata-rata. Autokorelasi harus nol di mana-mana tapi pada lag pertama. Autokorelasi parsial harus mati secara eksponensial. Bahkan dari kegilaan kita yang sekilas melalui dasar analisis deret waktu, jelaslah bahwa ada dualitas antara proses AR dan MA. Dualitas ini dapat dirangkum dalam tabel berikut.
Trading-strategy-mean-reversion
Online-trading-account-application-form