Proc-arima-moving-average

Proc-arima-moving-average

Opsi-opsi peminjaman-mak-90-stock
Sinyal forex-forex
Jual-opsi saham-strategi


Online-trading-account-in-pakistan Kursus-trading-forex-di-palembang Online-trading-futures-market Memahami-forex-trading-basics Strategi perdagangan-hari ini Options-day-trade-strategies

Pengantar ARIMA: model nonseasonal Persamaan peramalan ARIMA (p, d, q): Model ARIMA adalah, secara teori, kelas model paling umum untuk meramalkan deret waktu yang dapat dibuat menjadi 8220stationary8221 dengan membedakan (jika perlu), mungkin Dalam hubungannya dengan transformasi nonlinier seperti logging atau deflating (jika perlu). Variabel acak yang merupakan deret waktu bersifat stasioner jika sifat statistiknya konstan sepanjang waktu. Seri stasioner tidak memiliki tren, variasinya berkisar rata-rata memiliki amplitudo konstan, dan bergoyang secara konsisten. Yaitu pola waktu acak jangka pendeknya selalu terlihat sama dalam arti statistik. Kondisi terakhir ini berarti autokorelasinya (korelasi dengan penyimpangannya sendiri dari mean) tetap konstan dari waktu ke waktu, atau ekuivalen, bahwa spektrum kekuatannya tetap konstan seiring berjalannya waktu. Variabel acak dari bentuk ini dapat dilihat (seperti biasa) sebagai kombinasi antara sinyal dan noise, dan sinyal (jika ada) dapat menjadi pola pengembalian cepat atau lambat, atau osilasi sinusoidal, atau alternasi cepat pada tanda , Dan itu juga bisa memiliki komponen musiman. Model ARIMA dapat dilihat sebagai model 8220filter8221 yang mencoba memisahkan sinyal dari noise, dan sinyal tersebut kemudian diekstrapolasikan ke masa depan untuk mendapatkan perkiraan. Persamaan peramalan ARIMA untuk rangkaian waktu stasioner adalah persamaan linier (yaitu regresi-tipe) dimana prediktor terdiri dari kelambatan variabel dependen dan atau lag dari kesalahan perkiraan. Yaitu: Prediksi nilai Y adalah konstanta dan atau jumlah tertimbang dari satu atau lebih nilai Y dan satu angka tertimbang dari satu atau lebih nilai kesalahan terkini. Jika prediktor hanya terdiri dari nilai Y yang tertinggal, itu adalah model autoregresif murni (8220 self-regressed8221), yang hanyalah kasus khusus dari model regresi dan yang dapat dilengkapi dengan perangkat lunak regresi standar. Sebagai contoh, model autoregresif orde pertama (8220AR (1) 8221) untuk Y adalah model regresi sederhana dimana variabel independennya hanya Y yang tertinggal satu periode (LAG (Y, 1) dalam Statgrafik atau YLAG1 dalam RegresIt). Jika beberapa prediktor tertinggal dari kesalahan, model ARIMA TIDAK merupakan model regresi linier, karena tidak ada cara untuk menentukan error8221 8220last periodier178 sebagai variabel independen: kesalahan harus dihitung berdasarkan periode-ke-periode Saat model dipasang pada data. Dari sudut pandang teknis, masalah dengan menggunakan kesalahan tertinggal sebagai prediktor adalah bahwa prediksi model8217 bukanlah fungsi linear dari koefisien. Meskipun mereka adalah fungsi linier dari data masa lalu. Jadi, koefisien pada model ARIMA yang mencakup kesalahan tertinggal harus diestimasi dengan metode optimasi nonlinier (8220 climb-climbing8221) daripada hanya dengan memecahkan sistem persamaan. Akronim ARIMA adalah singkatan Auto-Regressive Integrated Moving Average. Lags dari rangkaian stasioner dalam persamaan peramalan disebut istilah quotautoregressivequot, kelambatan kesalahan perkiraan disebut istilah kuotasi rata-rata quotmoving average, dan deret waktu yang perlu dibedakan untuk dijadikan stasioner disebut versi seri integimental dari seri stasioner. Model random-walk dan random-trend, model autoregresif, dan model pemulusan eksponensial adalah kasus khusus model ARIMA. Model ARIMA nonseasonal diklasifikasikan sebagai model quotARIMA (p, d, q) quot, di mana: p adalah jumlah istilah autoregresif, d adalah jumlah perbedaan nonseasonal yang diperlukan untuk stasioneritas, dan q adalah jumlah kesalahan perkiraan yang tertinggal dalam Persamaan prediksi Persamaan peramalan dibangun sebagai berikut. Pertama, izinkan y menunjukkan perbedaan D dari Y. yang berarti: Perhatikan bahwa perbedaan kedua Y (kasus d2) bukanlah selisih 2 periode yang lalu. Sebaliknya, ini adalah perbedaan pertama-perbedaan-dari-pertama. Yang merupakan analog diskrit turunan kedua, yaitu akselerasi lokal dari seri daripada tren lokalnya. Dalam hal y. Persamaan peramalan umum adalah: Disini parameter rata-rata bergerak (9528217s) didefinisikan sehingga tanda-tanda mereka negatif dalam persamaan, mengikuti konvensi yang diperkenalkan oleh Box dan Jenkins. Beberapa penulis dan perangkat lunak (termasuk bahasa pemrograman R) mendefinisikannya sehingga mereka memiliki tanda plus. Bila nomor aktual dicolokkan ke dalam persamaan, tidak ada ambiguitas, tapi penting untuk mengetahui konvensi mana yang digunakan perangkat lunak Anda saat Anda membaca hasilnya. Seringkali parameter dilambangkan dengan AR (1), AR (2), 8230, dan MA (1), MA (2), 8230 dll. Untuk mengidentifikasi model ARIMA yang sesuai untuk Y. Anda memulai dengan menentukan urutan differencing (D) perlu membuat stasioner seri dan menghilangkan fitur musiman musiman, mungkin bersamaan dengan transformasi yang menstabilkan varians seperti penebangan atau pengapuran. Jika Anda berhenti pada titik ini dan meramalkan bahwa rangkaian yang berbeda adalah konstan, Anda hanya memiliki model acak berjalan atau acak acak. Namun, rangkaian stationarized masih memiliki kesalahan autokorelasi, menunjukkan bahwa beberapa jumlah istilah AR (p 8805 1) dan beberapa istilah MA (q 8805 1) juga diperlukan dalam persamaan peramalan. Proses penentuan nilai p, d, dan q yang terbaik untuk rangkaian waktu tertentu akan dibahas di bagian catatan selanjutnya (yang tautannya berada di bagian atas halaman ini), namun pratinjau beberapa jenis Model ARIMA nonseasonal yang biasa dijumpai diberikan di bawah ini. ARIMA (1,0,0) model autoregresif orde pertama: jika seri stasioner dan autokorelasi, mungkin dapat diprediksi sebagai kelipatan dari nilai sebelumnya, ditambah konstanta. Persamaan peramalan dalam kasus ini adalah 8230 yang Y regresi pada dirinya sendiri tertinggal oleh satu periode. Ini adalah model konstanta 8220ARIMA (1,0,0) constant8221. Jika mean Y adalah nol, maka istilah konstan tidak akan disertakan. Jika koefisien kemiringan 981 1 positif dan kurang dari 1 besarnya (harus kurang dari 1 dalam besaran jika Y adalah stasioner), model tersebut menggambarkan perilaku rata-rata pada nilai periodisasi berikutnya yang diperkirakan akan menjadi 981 1 kali sebagai Jauh dari mean sebagai nilai periode ini. Jika 981 1 negatif, ia memprediksi perilaku rata-rata dengan alternasi tanda, yaitu juga memprediksi bahwa Y akan berada di bawah rata-rata periode berikutnya jika berada di atas rata-rata periode ini. Dalam model autoregresif orde kedua (ARIMA (2,0,0)), akan ada istilah Y t-2 di sebelah kanan juga, dan seterusnya. Bergantung pada tanda dan besaran koefisien, model ARIMA (2,0,0) bisa menggambarkan sistem yang pembalikan rata-rata terjadi dengan mode sinusoidal oscillating, seperti gerak massa pada pegas yang mengalami guncangan acak. . ARIMA (0,1,0) berjalan acak: Jika seri Y tidak stasioner, model yang paling sederhana untuk model ini adalah model jalan acak, yang dapat dianggap sebagai kasus pembatas model AR (1) dimana autoregresif Koefisien sama dengan 1, yaitu deret dengan reversi mean yang jauh lebih lambat. Persamaan prediksi untuk model ini dapat ditulis sebagai: di mana istilah konstan adalah perubahan periode-ke-periode rata-rata (yaitu drift jangka panjang) di Y. Model ini dapat dipasang sebagai model regresi yang tidak mencegat dimana Perbedaan pertama Y adalah variabel dependen. Karena hanya mencakup perbedaan nonseasonal dan istilah konstan, model ini diklasifikasikan sebagai model quotARIMA (0,1,0) dengan konstan. Model random-walk-without -drift akan menjadi ARIMA (0,1, 0) model tanpa ARIMA konstan (1,1,0) model autoregresif orde satu yang terdesentralisasi: Jika kesalahan model jalan acak diobot dengan autokorelasi, mungkin masalahnya dapat diperbaiki dengan menambahkan satu lag variabel dependen ke persamaan prediksi- -yaitu Dengan mengundurkan diri dari perbedaan pertama Y pada dirinya sendiri yang tertinggal satu periode. Ini akan menghasilkan persamaan prediksi berikut: yang dapat diatur ulang menjadi Ini adalah model autoregresif orde pertama dengan satu urutan perbedaan nonseasonal dan istilah konstan - yaitu. Model ARIMA (1,1,0). ARIMA (0,1,1) tanpa perataan eksponensial sederhana: Strategi lain untuk memperbaiki kesalahan autokorelasi dalam model jalan acak disarankan oleh model pemulusan eksponensial sederhana. Ingatlah bahwa untuk beberapa seri waktu nonstasioner (misalnya yang menunjukkan fluktuasi yang bising di sekitar rata-rata yang bervariasi secara perlahan), model jalan acak tidak berjalan sebaik rata-rata pergerakan nilai masa lalu. Dengan kata lain, daripada mengambil pengamatan terbaru sebagai perkiraan pengamatan berikutnya, lebih baik menggunakan rata-rata beberapa pengamatan terakhir untuk menyaring kebisingan dan memperkirakan secara lebih akurat mean lokal. Model pemulusan eksponensial sederhana menggunakan rata-rata pergerakan rata-rata tertimbang eksponensial untuk mencapai efek ini. Persamaan prediksi untuk model smoothing eksponensial sederhana dapat ditulis dalam sejumlah bentuk ekuivalen matematis. Salah satunya adalah bentuk koreksi yang disebut 8220error correction8221, dimana ramalan sebelumnya disesuaikan dengan kesalahan yang dibuatnya: Karena e t-1 Y t-1 - 374 t-1 menurut definisinya, ini dapat ditulis ulang sebagai : Yang merupakan persamaan peramalan ARIMA (0,1,1) - tanpa perkiraan konstan dengan 952 1 1 - 945. Ini berarti bahwa Anda dapat menyesuaikan smoothing eksponensial sederhana dengan menentukannya sebagai model ARIMA (0,1,1) tanpa Konstan, dan perkiraan koefisien MA (1) sesuai dengan 1-minus-alpha dalam formula SES. Ingatlah bahwa dalam model SES, rata-rata usia data dalam prakiraan 1 periode adalah 1 945. yang berarti bahwa mereka cenderung tertinggal dari tren atau titik balik sekitar 1 945 periode. Dengan demikian, rata-rata usia data dalam prakiraan 1-periode-depan model ARIMA (0,1,1) - tanpa konstan adalah 1 (1 - 952 1). Jadi, misalnya, jika 952 1 0,8, usia rata-rata adalah 5. Karena 952 1 mendekati 1, model ARIMA (0,1,1) - tanpa model konstan menjadi rata-rata bergerak jangka-panjang, dan sebagai 952 1 Pendekatan 0 menjadi model random-walk-without-drift. Apa cara terbaik untuk memperbaiki autokorelasi: menambahkan istilah AR atau menambahkan istilah MA Dalam dua model sebelumnya yang dibahas di atas, masalah kesalahan autokorelasi dalam model jalan acak diperbaiki dengan dua cara yang berbeda: dengan menambahkan nilai lag dari seri yang berbeda Ke persamaan atau menambahkan nilai tertinggal dari kesalahan perkiraan. Pendekatan mana yang terbaik Aturan praktis untuk situasi ini, yang akan dibahas lebih rinci nanti, adalah bahwa autokorelasi positif biasanya paling baik ditangani dengan menambahkan istilah AR ke model dan autokorelasi negatif biasanya paling baik ditangani dengan menambahkan MA istilah. Dalam deret waktu bisnis dan ekonomi, autokorelasi negatif sering muncul sebagai artefak differencing. (Secara umum, differencing mengurangi autokorelasi positif dan bahkan dapat menyebabkan perubahan dari autokorelasi positif ke negatif.) Jadi, model ARIMA (0,1,1), di mana perbedaannya disertai dengan istilah MA, lebih sering digunakan daripada Model ARIMA (1,1,0). ARIMA (0,1,1) dengan perataan eksponensial sederhana konstan dengan pertumbuhan: Dengan menerapkan model SES sebagai model ARIMA, Anda benar-benar mendapatkan fleksibilitas. Pertama, perkiraan koefisien MA (1) dibiarkan negatif. Ini sesuai dengan faktor pemulusan yang lebih besar dari 1 dalam model SES, yang biasanya tidak diizinkan oleh prosedur pemasangan model SES. Kedua, Anda memiliki pilihan untuk memasukkan istilah konstan dalam model ARIMA jika Anda mau, untuk memperkirakan tren nol rata-rata. Model ARIMA (0,1,1) dengan konstanta memiliki persamaan prediksi: Prakiraan satu periode dari model ini secara kualitatif serupa dengan model SES, kecuali bahwa lintasan perkiraan jangka panjang biasanya adalah Garis miring (kemiringannya sama dengan mu) bukan garis horizontal. ARIMA (0,2,1) atau (0,2,2) tanpa pemulusan eksponensial linier konstan: Model pemulusan eksponensial linier adalah model ARIMA yang menggunakan dua perbedaan nonseason dalam hubungannya dengan persyaratan MA. Perbedaan kedua dari seri Y bukan hanya perbedaan antara Y dan dirinya tertinggal dua periode, namun ini adalah perbedaan pertama dari perbedaan pertama - i. Perubahan perubahan Y pada periode t. Jadi, perbedaan kedua Y pada periode t sama dengan (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Perbedaan kedua dari fungsi diskrit sama dengan turunan kedua dari fungsi kontinyu: ia mengukur kuotasi kuadrat atau quotcurvaturequot dalam fungsi pada suatu titik waktu tertentu. Model ARIMA (0,2,2) tanpa konstan memprediksi bahwa perbedaan kedua dari rangkaian sama dengan fungsi linier dari dua kesalahan perkiraan terakhir: yang dapat disusun ulang sebagai: di mana 952 1 dan 952 2 adalah MA (1) dan MA (2) koefisien. Ini adalah model pemulusan eksponensial linear umum. Dasarnya sama dengan model Holt8217s, dan model Brown8217s adalah kasus khusus. Ini menggunakan rata-rata pergerakan tertimbang eksponensial untuk memperkirakan tingkat lokal dan tren lokal dalam rangkaian. Perkiraan jangka panjang dari model ini menyatu dengan garis lurus yang kemiringannya bergantung pada tren rata-rata yang diamati menjelang akhir rangkaian. ARIMA (1,1,2) tanpa perataan eksponensial eksponensial yang terfragmentasi. Model ini diilustrasikan pada slide yang menyertainya pada model ARIMA. Ini mengekstrapolasikan tren lokal di akhir seri namun meratakannya pada cakrawala perkiraan yang lebih panjang untuk memperkenalkan catatan konservatisme, sebuah praktik yang memiliki dukungan empiris. Lihat artikel di quotWhy the Damped Trend karyaquot oleh Gardner dan McKenzie dan artikel quotGolden Rulequot oleh Armstrong dkk. Untuk rinciannya. Umumnya disarankan untuk tetap berpegang pada model di mana setidaknya satu dari p dan q tidak lebih besar dari 1, yaitu jangan mencoba menyesuaikan model seperti ARIMA (2,1,2), karena hal ini cenderung menyebabkan overfitting. Dan isu-isu kuotom-faktorquot yang dibahas secara lebih rinci dalam catatan tentang struktur matematis model ARIMA. Implementasi Spreadsheet: Model ARIMA seperti yang dijelaskan di atas mudah diterapkan pada spreadsheet. Persamaan prediksi adalah persamaan linier yang mengacu pada nilai-nilai masa lalu dari rangkaian waktu asli dan nilai kesalahan masa lalu. Dengan demikian, Anda dapat membuat spreadsheet peramalan ARIMA dengan menyimpan data di kolom A, rumus peramalan pada kolom B, dan kesalahan (data minus prakiraan) di kolom C. Rumus peramalan pada sel biasa di kolom B hanya akan menjadi Sebuah ekspresi linier yang mengacu pada nilai-nilai pada baris-kolom sebelumnya dari kolom A dan C, dikalikan dengan koefisien AR atau MA yang sesuai yang disimpan di sel-sel di tempat lain pada spreadsheet. Opsi ARIMA PROC Opsi berikut dapat digunakan dalam pernyataan ARIMA PROC. Menentukan nama kumpulan data SAS yang berisi deret waktu. Jika spesifikasi DATA yang berbeda muncul dalam laporan PROC ARIMA and IDENTIFY, yang ada dalam Pernyataan IDENTIFIKASI digunakan. Jika opsi DATA tidak ditentukan baik dalam pernyataan PROC ARIMA atau IDENTIFIKASI, kumpulan data SAS yang paling baru dibuat digunakan. PLOTSlt (opsi plot global) lt plot-request lt (opsi) PLOTSlt (opsi plot global) lt (permintaan plot lt (opsi) lt plot-request lt (options)) mengendalikan plot yang dihasilkan melalui ODS Graphics . Bila Anda hanya menentukan satu permintaan plot, Anda dapat menghilangkan tanda kurung di seputar permintaan plot. Berikut adalah beberapa contohnya: Anda harus mengaktifkan Graphics ODS sebelum meminta plot seperti yang ditunjukkan pada pernyataan berikut. Untuk informasi umum tentang Grafik ODS, lihat Bab 21, Grafik Statistik Menggunakan ODS (Panduan Pengguna SASSTAT). Jika Anda telah mengaktifkan Graphics ODS namun tidak menentukan permintaan plot tertentu, maka plot default yang terkait dengan masing-masing pernyataan ARIMA PROC yang digunakan dalam program dihasilkan. Plot printer baris lama ditekan saat Graphics ODS diaktifkan. Karena tidak ada plot spesifik yang diminta dalam program ini, plot default yang terkait dengan tahap identifikasi dan estimasi diproduksi. Global Plot Options: Global-plot-options berlaku untuk semua plot yang relevan yang dihasilkan oleh prosedur ARIMA. Opsi plot-plot global berikut didukung: HANYA menekan plot default. Hanya plot yang diminta khusus yang diproduksi. Memecahkan grafik yang jika tidak dipartisi menjadi plot komponen individual. Pilihan Plot Spesifik: Daftar berikut ini menjelaskan plot spesifik dan pilihan mereka. Menghasilkan semua plot yang sesuai untuk analisis tertentu. Menekan semua plot Menghasilkan plot yang terkait dengan tahap identifikasi pemodelan. Plot panel yang sesuai dengan opsi CORR dan CROSSCORR diproduksi secara default. Pilihan plot-plot berikut tersedia: menghasilkan plot autokorelasi. Menghasilkan semua plot yang terkait dengan tahap identifikasi. Menghasilkan panel plot yang berguna dalam tren dan analisis korelasi seri. Panel terdiri dari yang berikut ini: rangkaian deret waktu rangkaian deret autokorelasi rangkaian seri-parsial-autokorelasi plot invers-invokadisi linier menghasilkan panel plot korelasi silang. Menghasilkan plot invers-autokorelasi. Menghasilkan plot autokorelasi parsial. Menghasilkan plot residu. Korelasi residual dan normalitas panel diagnostik diproduksi secara default. Pilihan plot-sisa berikut tersedia: menghasilkan plot autokorelasi residu. Menghasilkan semua plot diagnostik sisa yang sesuai untuk analisis tertentu. Menghasilkan panel ringkasan dari diagnostik korelasi residual yang terdiri dari berikut ini: plot residu-autokorelasi plot residu-parsial-autokorelasi plot residu-invers-autokorelasi sebidang uji white-noise Ljung-Box p-nilai pada kelambatan yang berbeda. Menghasilkan histogram residu. Menghasilkan plot invers-autokorelasi sisa. Menghasilkan panel ringkasan diagnostik normalitas residual yang terdiri dari berikut ini: histogram residu plot kuantum normal dari residu menghasilkan plot autokorelasi parsial residu. Menghasilkan plot residu quantile yang normal. Menghasilkan sebaran residu yang tersebar melawan waktu, yang memiliki kelengkapan mulus yang dilapisi. Menghasilkan plot uji white-noise Ljung-Box p-nilai pada kelambatan yang berbeda. Menghasilkan plot perkiraan di tahap peramalan. Plot perkiraan-hanya yang menunjukkan prakiraan multistep di wilayah perkiraan diproduksi secara default. Pilihan perkiraan-plot berikut tersedia: SEMUA menghasilkan plot perkiraan saja dan juga plot perkiraan. Menghasilkan sebuah plot yang menunjukkan prakiraan satu langkah di depan serta prakiraan multistep-depan. Menghasilkan sebuah plot yang hanya menunjukkan prakiraan multistep-depan di wilayah perkiraan. Menentukan kumpulan data SAS yang perkiraannya adalah keluaran. Jika spesifikasi OUT yang berbeda muncul dalam laporan PROC ARIMA dan FORECAST, yang ada dalam pernyataan FORECAST digunakan. Pengenalan SAS: Proc Arima Analisis data deret waktu dalam domain waktu dilakukan dengan prosedur ini. Metodologi Box-Jenkins (pemasangan model ARIMA ke data deret waktu) dan juga fungsi transfer (tipe input) model dapat digunakan. Analisis domain frekuensi time series dapat dilakukan dengan menggunakan Proc Spectra. Kerangka untuk analisis adalah bahwa rangkaian waktu pengamatan X (t) bersifat stasioner dan memenuhi persamaan ARMA dari bentuk dimana Z (t) adalah proses white noise. Konstanta phi (1). Phi (p) disebut koefisien autoregresif dan bilangan p disebut orde komponen autoregresif. Konstanta theta (1). Theta (q) disebut koefisien rata-rata bergerak dan bilangan q disebut urutan komponen rata-rata bergerak. Hal ini dimungkinkan untuk p atau q menjadi nol. Penggunaan proc arima agar sesuai dengan model ARMA terdiri dari 3 langkah. Langkah pertama adalah identifikasi model, dimana rangkaian yang diamati diubah menjadi stasioner. Satu-satunya transformasi yang tersedia dalam proc arima adalah differencing. Langkah kedua adalah estimasi model, dimana perintah p dan q dipilih dan parameter yang sesuai diperkirakan. Langkah ketiga adalah peramalan, di mana model perkiraan digunakan untuk meramalkan nilai masa depan dari deret waktu yang dapat diamati. Sebagai contoh, file data milk.dat yang berisi data produksi susu yang diambil dari Cryer akan dianalisis. Berikut adalah perintah yang bisa digunakan untuk masing-masing dari 3 langkah. PILIHAN UNTUK PERNYATAAN IDENTIFIKASI: Pernyataan var diperlukan dan menentukan variabel (s) dalam kumpulan data yang akan dianalisis. Nomor opsional dalam kurung menentukan LAG dimana perbedaan harus dihitung. Sebuah pernyataan bahwa varmilk akan menganalisis seri susu tanpa membedakan varmilk (1) akan menganalisis perbedaan pertama susu varmilk (1,1) perbedaan kedua susu. Pernyataan var menghasilkan 3 plot untuk variabel yang ditentukan: fungsi autokorelasi sampel, fungsi autokorelasi invers sampel, dan fungsi autokorelasi parsial sampel. Plot dan tabel mentah dari nilai-nilainya tercetak di jendela output. Plot kualitas yang lebih tinggi dapat diproduksi melalui penggunaan opsi lain (rinci di bawah) dan gplot proc. Pilihan nlag menyebabkan 3 plot mencetak nilai hingga lag 30. Jika tidak ditentukan, standarnya adalah nlag24 atau 25 dari jumlah pengamatan, mana yang kurang. Pilihan pusat mengurangi rata-rata dari seri yang ditentukan oleh pernyataan var. Rata-rata ditambahkan kembali secara otomatis selama langkah perkiraan. Pilihan outcov menempatkan nilai dari fungsi korelasi sampel menjadi kumpulan data SAS. Nilai ini dapat digunakan untuk menghasilkan plot kualitas tinggi dari fungsi ini menggunakan gplot proc. Variabel outputnya adalah: LAG. VAR (nama varible yang ditentukan dalam opsi var), CROSSVAR (nama variabel yang ditentukan dalam opsi crosscorr), N (jumlah observasi yang digunakan untuk menghitung nilai arus kovariansi atau crosscovariance), COV (nilai salib Kovarians), CORR (nilai fungsi autokorelasi sampel), STDERR (kesalahan standar autokorelasi), INVCORR (nilai fungsi autokorelasi invers sampel), dan PARTCORR (nilai fungsi autokorelasi parsial sampel). Pilihan noprint menekan output dari grafik kualitas rendah yang biasanya dibuat oleh pernyataan var. Pilihan ini digunakan terutama dengan opsi outcov. PILIHAN UNTUK PERNYATAAN ESTIMASI: Opsi q1 p1 menentukan pesanan rata-rata regresif dan bergerak agar sesuai. Bentuk lain dari spesifikasi ini adalah: q (3) untuk menentukan bahwa HANYA parameter theta (3) diperbolehkan menjadi tidak nol p (12) (3) untuk model musiman (1-phi (12) B12) (1 -phi (3) B3) di mana B adalah operator backshift p (3,12) untuk model dimana hanya phi (3) dan phi (12) yang diizinkan menjadi tidak nol. Pilihan nodf menggunakan ukuran sampel daripada derajat kebebasan sebagai pembagi saat memperkirakan varians white noise. Pilihan metode memilih metode estimasi untuk parameter. Pilihannya adalah ml untuk perkiraan kemungkinan maksimum (Gaussian), uls untuk kuadrat tak bersyarat, dan bersyarat untuk kuadrat terkecil bersyarat. Opsi plot menghasilkan 3 plot yang sama seperti dalam identifikasi pernyataan RESIDUALS setelah parameter model diperkirakan. Ini adalah pemeriksaan lain yang berguna mengenai keputihan residu. PILIHAN UNTUK PERNYATAAN PERDAMAIAN: Opsi utama menentukan jumlah interval waktu ke masa depan yang perkiraan akan dibuat. Dengan menggunakan opsi out dan printall dalam peramalan, dataset SAS akan dibuat yang akan berisi nilai dari seri asli dan nilai prediksi dari seri yang menggunakan model setiap saat. Ini bisa berguna untuk analisis kinerja model masa lalu. Dalam prakteknya, beberapa pernyataan perkiraan yang berbeda dicoba secara berurutan untuk melihat model mana yang paling sesuai dengan data. Proc arima bersifat interaktif, dalam arti upaya sekuensial ini bisa dilakukan tanpa memulai ulang prosedurnya. Cukup kirimkan pernyataan perkiraan yang berurutan pernyataan identitas asli akan dipertahankan. Model fungsi transfer dapat disesuaikan dengan menggunakan opsi crosscorr untuk mengidentifikasi pernyataan dan opsi masukan dari perkiraan pernyataan. Mekanika prosedur ini diilustrasikan untuk dataset palsu yang berisi dua deret waktu yang terkait dengan model fungsi transfer. Dalam kasus ini, Y bergantung pada X. Pertama, proses X dimodelkan dengan menggunakan perkiraan dan perkiraan pernyataan. Kemudian Y diidentifikasi dan korelasi silang antara proses prewhitened X dan Y diperkirakan. Program ini mungkin terlihat seperti ini. Dari informasi korelasi silang, kelambatan proses input X mempengaruhi Y dapat diidentifikasi secara sementara. Perhatikan bahwa hanya model kausal yang diperbolehkan korelasi silang non-nol pada kelambatan negatif tidak dapat dimodelkan dalam proc arima. Sebagai ilustrasi, katakanlah ketidakberhentian non-nol adalah 2 dan 4. Proses Y dapat diperkirakan sebagai berikut. Masukan berupa cB2 dB4 B2 (c dB2). Ini adalah bentuk terakhir yang memberikan bentuk pernyataan masukan. Perhatikan bahwa pernyataan perkiraan selalu mengacu pada pernyataan identifikasi terbaru untuk menentukan variabel apa yang harus disertakan dalam model. Dengan demikian differencing dan centering ditangani secara otomatis (jika digunakan) KECUALI bahwa differencing harus secara eksplisit ditentukan dalam pernyataan crosscorr. Untuk keterangan lebih lanjut, lihat bantuan online di bawah SAS SYSTEM HELP - MODELING ANALYSIS TOOLS - ECONOMETRICS amp TIME SERIES - ARIMA atau SASETS Guide. Copy Hak Cipta 2016 Jerry Alan Veeh. Seluruh hak cipta.
Ocaml-trading-system
Pilihan-trading-advisory-services-reviews