R-moving-average-na

R-moving-average-na

Training-plan-template-Sharepoint
Yahoo-forex-cross-rates
Online-trading-platform-bandingkan


Buletin perdagangan-akademi-online Pialang opsi biner teratas-2014 Stock-options-robot Wa-forex-piratage-facebook Indikator tiga-eksponensial-moving-average Uitleg-forex-handel

Perdagangan dengan indikator ADX melibatkan sinyal berikut: ADX bertahan di bawah level 20 mdash tidak ada tren atau trennya lemah. ADX bergerak diatas level 20 mdash trend yang kuat. ADX yang melewati 40 level tren mdash sangat ekstrem. Nilai ADX naik tren mdash semakin kuat, tren mdash jatuh melemah. DI tetap di atas -DI mdash uptrend ada di tempat. -DI tetap berada di puncak tren turunan DI mdash. Dua tren DI cross mdash berubah. Average Directional Index (ADX) Average Directional Index (ADX) menggambarkan adanya atau tidak adanya suatu tren. ADX memberi nasihat pada kekuatan kekuatan dominan yang menggerakkan harga pasar di sini dan saat ini. Dengan kata lain, saran ADX pada kecenderungan tren: apakah tren akan berlanjut dan menguat atau akan kehilangan posisinya. Penulis Indeks Rata-rata Terarah J. Welles Wilder menganggap indikator ADX-nya sebagai pencapaian utama dan hanya karena sinyal yang diberikan oleh ADX tidak mudah untuk dipahami dari tampilan pertama, banyak pedagang Forex menghindari penggunaan ADX untuk lebih visual. Indikator yang komprehensif. Cara menafsirkan indikator ADX ADX memiliki 2 baris: ADX sendiri (putih), DI (hijau) dan -DI (merah). Pedagang kemudian perlu menggambar garis horizontal di level 20. Semua pembacaan ADX yang berada di bawah 20 menunjukkan tren yang lemah dan tidak jelas, sementara pembacaan di atas 20 menunjukkan bahwa tren telah meningkat. Artinya, pada dasarnya, penjelasan paling sederhana tentang tujuan ADX. ADX memungkinkan trader Forex untuk menentukan apakah trennya kuat atau lemah dan dengan demikian memilih dan strategi yang tepat untuk diperdagangkan dengan: tren mengikuti strategi atau strategi yang sesuai dengan periode pasar konsolidasi tanpa perubahan harga yang signifikan. Ada juga garis tambahan yang akan ditambahkan ke jendela indikator ADX - pada level 40. Cara berdagang dengan ADX Trading dengan ADX terlihat sebagai berikut: Jika ADX diperdagangkan di bawah 20 - tidak ada tren atau trennya lemah, maka strategi non-trend berikut harus digunakan, jika kerugian dapat terjadi sebagai akibat dari false. Sinyal dan cambuk-gergaji yang terjadi. Contoh metode non-trend berikut adalah perdagangan saluran. Jika ADX diperdagangkan di atas 20 tapi di bawah 40, sekarang saatnya menerapkan metode tren berikut. Contohnya adalah: Forex trading Moving averages atau atau trading dengan indikator Parabolic SAR. Ketika ADX mencapai level 40, ini menunjukkan situasi overboughtoversold (tergantung pada tren) di pasar dan sekarang saatnya untuk melindungi beberapa keuntungan setidaknya memindahkan stop loss agar bisa mencapai titik impas. Ketika ADX melewati level 40, inilah saat yang tepat untuk mulai mengumpulkan keuntungan secara bertahap dari perdagangan di reli dan aksi jual dan melindungi posisi yang tersisa dengan trailing stops. Garis ADX - DI digunakan untuk melihat sinyal masuk. Semua - Crossover DI diabaikan sementara ADX tetap di bawah 20. Setelah ADX mencapai puncak di atas 20, sinyal beli terjadi saat DI (hijau) melintasi ke atas dan di atas -DI (merah). Sinyal jual akan menjadi kebalikannya: DI akan menyeberang -DI ke bawah. Jika setelah sinyal yang baru dibuat, crossover berlawanan lainnya terjadi dalam waktu singkat, sinyal asli harus diabaikan dan posisi terlindungi segera atau tertutup. Indikator ADX tidak pernah diperdagangkan sendiri, melainkan dikombinasikan dengan indikator dan alat lainnya. Indikator ADX sebagian besar waktu memberi banyak sinyal kemudian membandingkan rata-rata perpindahan moving average movingover atau Stochastic yang lebih cepat, misalnya, keandalan indikator ADX jauh lebih tinggi daripada indikator lain dalam toolkit pedagang, yang menjadikannya alat yang berharga bagi banyak pedagang Forex. . Dan hanya satu ide lagi untuk menguji: Ketika ADX naik di atas 20 untuk pertama kalinya dan kemudian rata untuk beberapa lama, diyakini ada tren baru lahir dan alasan ADX saat ini datar adalah karena pasar bereaksi terhadap hal ini. Formasi tren baru dengan melakukan koreksi awal pertama. Selama koreksi ini adalah saat yang tepat untuk memulai pesanan baru. Formula indikator ADX Hak Cipta copy Indikator Forex Saya ingin mengucapkan terima kasih kepada seorang teman untuk seorang pemula agar tidak melakukan demo demo begitu nyata dan kemarin saya menemukan situs Anda. Quero agradecer ao amigo pois sou novato nao to ainda negociando tidak ada real so na demo e ontem eu descobri seu saite tenho apreendido muinto e embreve ja irei operar na conta nyata pois suas explicaoes estao a me dar confiana obrigado mesmo e sertamente estarei de olho no seu Tidak apa-apa Bila tren yang kuat dalam bermain dan berbalik ke arah tren yang kuat ke arah yang berlawanan, apa yang harus kita lihat di ADX Jika Anda menunggunya kembali ke posisi 20 dan naik di atas, Anda telah melewatkan tren kuat ke arah yang berlawanan. . Bagaimana Anda mengenali situasi ini sebelum terlambat? Terima kasih Anda harus menambahkan EMC2 (r-xd) (rxl) -x2 (m-lc4) Bila tren yang kuat diubah oleh tren kuat yang berlawanan, indikator ADX sama sekali tidak berguna. Pada dasarnya, segera setelah ADX mulai menurun dari level 30-45 teratas, hal itu tidak lagi memiliki minat karena tidak dapat mencerminkan perubahan dalam tren. Pedagang hanya bisa mengacu pada -DI untuk konfirmasi tren. Maukah Anda menunjukkan tempat untuk menambahkan baris baru. Thanks in advanceGASES, LIQUIDS and SOLIDS aplikasi model partikel untuk tiga keadaan model partikel materi, menjelaskan, menjelaskan sifat-sifat gas, cairan dan padatan Doc Browns Chemistry KS4 science GCSEIGCSE Revisi Catatan Perbandingan sifatnya GASES, LIQUIDS dan SOLIDS States of Matter catatan revisi gasliquidsolid Bagian 1 Model partikel kinetik dan menjelaskan dan menjelaskan sifat gas, cairan dan padatan, perubahan dan solusi negara (bagian 1a sampai 3d) Anda harus tahu bahwa ketiga keadaan materi itu padat, cair dan gas. Peleburan dan pembekuan berlangsung pada titik leleh, mendidih dan kondensasi terjadi pada titik didih. Tiga keadaan materi dapat diwakili oleh model sederhana di mana partikel diwakili oleh bola padat kecil. Teori partikel dapat membantu menjelaskan pencairan, perebusan, pembekuan dan pengembunan. Jumlah energi yang diperlukan untuk mengubah keadaan dari padatan menjadi cair dan dari cair ke gas bergantung pada kekuatan kekuatan antara partikel substansi dan sifat partikel yang terlibat tergantung pada jenis ikatan dan struktur zat. Semakin kuat kekuatan antar partikel semakin tinggi titik leleh dan titik didih zat. Untuk rinciannya lihat catatan struktur dan ikatan. Keadaan fisik yang diadopsi material bergantung pada struktur, suhu dan tekanannya. Simbol negara yang digunakan dalam persamaan: (g) larutan cair cair aqous (aq) larutan berair padat berarti sesuatu dilarutkan dalam air Diagram partikel pada halaman ini adalah representasi 2D dari struktur dan keadaannya CONTOH TIGA FISIK STATES OF MATTER GASES mis Campuran udara di sekitar kita (termasuk oksigen yang dibutuhkan untuk pembakaran) dan uap bertekanan tinggi pada boiler dan silinder lokomotif uap. Semua gas di udara tidak terlihat, tidak berwarna dan transparan. Perhatikan bahwa uap yang Anda lihat di luar lokomotif ketel atau uap sebenarnya adalah tetesan cairan air yang halus, terbentuk dari uap gas buang yang dikeluarkan saat memenuhi udara dingin perubahan gas ke cair (efek yang sama dalam kabut dan kabut) . LIQUIDS mis. Air adalah contoh yang paling umum, tapi begitu juga susu, mentega panas, bensin, minyak, merkuri atau alkohol dalam termometer. SOLIDS mis. Batu, semua logam pada suhu kamar (kecuali merkuri), karet sepatu boot dan sebagian besar benda fisik di sekitar Anda. Sebenarnya sebagian besar benda tidak berguna kecuali jika memiliki struktur padat. Pada halaman ini sifat fisik dasar gas, cairan dan padatan dijelaskan dalam bentuk struktur, gerakan partikel (teori partikel kinetik), efek perubahan suhu dan tekanan, dan model partikel. Digunakan untuk menjelaskan sifat dan karakteristik ini. Mudah-mudahan, teori dan fakta akan sesuai untuk memberi para siswa pemahaman yang jelas tentang dunia material di sekitar mereka dalam hal gas, cairan dan padatan yang disebut sebagai tiga keadaan fisik materi. Perubahan keadaan yang dikenal sebagai pencairan, peleburan, pendidihan, penguapan, pengembunan, pencairan, pembekuan, pemadatan, kristalisasi dijelaskan dan dijelaskan dengan gambar model partikel untuk membantu pemahaman. Ada juga penyebutan cairan yang mudah larut dan tidak bercampur dan menjelaskan persyaratan volatile dan volatilitas bila diaplikasikan pada cairan. Catatan revisi tentang keadaan materi ini seharusnya berguna untuk kursus sains kimia AQA, Edexcel dan OCR GCSE (91) yang baru. Subindex untuk bagian Bagian I (halaman ini): 1.1. The Three States of Matter, model teori partikel gasliquidsolid Tiga keadaan materi padat, cair dan gas. Baik pencairan dan pembekuan bisa terjadi pada titik leleh, sedangkan mendidih dan kondensasi berlangsung pada titik didih. Penguapan bisa terjadi pada suhu apapun dari permukaan cair. Anda bisa mewakili tiga keadaan materi dengan model partikel sederhana. Dalam modeldiagrams ini, partikel diwakili oleh bola padat kecil (struktur elektron diabaikan). Teori partikel kinetik dapat membantu menjelaskan perubahan keadaan seperti pencairan, pendinginan, pembekuan dan pengembunan. Jumlah energi yang dibutuhkan untuk mengubah keadaan dari padatan menjadi cair atau dari cairan ke gas bergantung pada kekuatan kekuatan antara partikel zat. Kekuatan ini mungkin merupakan kekuatan intermolekul yang relatif lemah (ikatan antarmolekul) atau ikatan kimia kuat (ionik, kovalen atau logam). Sifat partikel yang terlibat tergantung pada jenis ikatan kimia dan struktur zat. Semakin kuat kekuatan tarik antara partikel semakin tinggi titik lebur dan titik didih zat APA ITU TIGA NEGARA MATERI Sebagian besar bahan dapat digambarkan sebagai gas, cair atau padat. MENGAPA MEREKA SEPERTI APA YANG MEREKA Hanya tahu cukup, kita memerlukan teori gas yang komprehensif, yang dapat menjelaskan perilaku mereka dan membuat prediksi tentang apa yang terjadi mis. Jika kita mengubah suhu atau tekanan. BAGAIMANA KITA MENJELASKAN BAGAIMANA MEREKA MEMILIKI Kita membutuhkan model teoritis mis. Teori partikel yang didukung oleh bukti eksperimental. MODEL PARTIKEL YANG BISA MEMBANTU KAMI MEMAHAMI SIFAT DAN KARAKTERISTIK MEREKA MENGAPA SAYA PENTING UNTUK MENGETAHUI SIFAT-SIFATNYA GAS, LIQUIDS DAN SOLIDS Penting dalam industri kimia untuk mengetahui tentang perilaku gas, cairan dan padatan dalam proses kimia mis. Apa yang terjadi pada keadaan yang berbeda dengan perubahan suhu dan tekanan. Apa itu TEORI PARTIKEL KINETIKA, cairan dan padatan Teori partikel kinetik keadaan materi didasarkan pada gagasan semua bahan yang ada sebagai partikel sangat kecil yang mungkin merupakan atom atau molekul individu dan interaksinya satu sama lain. Oleh tabrakan dalam gas atau cairan atau oleh getaran dan ikatan kimia dalam padatan. DAPATKAN KAMI MEMBUAT PREDIKSI BERDASARKAN SIFAT-SIFAT KARAKTERISTIK Halaman ini memperkenalkan deskripsi fisik umum zat-zat di tingkat klasifikasi fisik (nonklinis) yang paling sederhana yaitu gas, cairan atau zat padat. NAMUN, halaman web ini juga memperkenalkan model partikel di mana lingkaran kecil mewakili sebuah atom atau molekul yaitu partikel tertentu atau satuan zat yang paling sederhana. Bagian ini cukup abstrak karena Anda berbicara tentang partikel yang tidak dapat Anda lihat secara terpisah, hanya material massal dan karakter fisik dan propertinya. Apakah ada LIMITASI pada model partikel Partikel diperlakukan sebagai bola inelastis sederhana dan hanya berperilaku seperti bola snooker menit yang terbang di sekitar, tidak sepenuhnya benar, tapi terbang melintas secara acak tanpa henti Meskipun partikel diasumsikan sebagai bola keras dan inelastis. , Pada kenyataannya mereka adalah segala bentuk dan putaran dan tekuk pada tumbukan dengan partikel lain dan ketika mereka bereaksi, mereka terbagi menjadi fragmen saat ikatan pecah. Model sederhana mengasumsikan tidak ada kekuatan di antara partikel-partikel itu, tidak benar, model ini sedikit memperhitungkan kekuatan di antara partikel-partikel, bahkan pada gas-gas yang Anda dapatkan dengan kekuatan antarmolekul sangat lemah. Model partikel tidak memperhitungkan ukuran sebenarnya partikel mis. Ionsmolekul dapat sangat berbeda ukurannya mis. Bandingkan molekul etena dengan molekul poli (etena) Ruang di antara partikel APA ITU NEGARA YANG BERKELANJUTAN APA ITU SIFAT-SIFAT DARI GAS BAGAIMANA BERBAGAI PARTIKEL BERBEDA Bagaimana teori partikel kinetik gas menjelaskan sifat gas A gas Tidak memiliki bentuk atau volume tetap, tapi selalu menyebar untuk mengisi wadah - molekul gas akan menyebar ke tempat yang tersedia. Hampir tidak ada kekuatan tarik-menarik antara partikel sehingga mereka benar-benar bebas satu sama lain. Partikel secara luas ditempatkan dan tersebar pada bergerak cepat secara acak ke seluruh wadah sehingga tidak ada ketertiban dalam sistem. Partikel bergerak secara linier dan cepat ke segala arah. Dan sering bertabrakan satu sama lain dan sisi wadah. Tumbukan partikel gas dengan permukaan wadah menyebabkan tekanan gas. Pada memantul dari permukaan mereka mengerahkan kekuatan dalam melakukannya. Dengan kenaikan suhu. Partikel bergerak lebih cepat karena mereka mendapatkan energi kinetik. Tingkat tumbukan antara partikel itu sendiri dan permukaan wadah meningkat dan ini meningkatkan tekanan gas misalnya di lokomotif uap atau volume wadah jika bisa meluas misalnya seperti balon. Gas memiliki kerapatan sangat rendah (ringan) karena partikelnya begitu terbentang dalam wadah (density mass volume). Density order: gas gtgtgt gt gtgtgt padat Gas mengalir dengan bebas karena tidak ada kekuatan daya tarik yang efektif antara molekul partikel gas. Kemudahan urutan aliran. Cairan gtgtgt cair (tidak ada aliran nyata dalam padatan kecuali jika Anda mengaduknya) Karena gas dan cairan ini digambarkan sebagai cairan. Gas tidak memiliki permukaan. Dan tidak ada bentuk atau volume tetap. Dan karena kurangnya daya tarik partikel, mereka selalu menyebar dan mengisi wadah apapun (jadi volume volume gas kontainer). Gas mudah dikompres karena ruang kosong di antara partikel. Kemudahan kompresi order. Gas gas Bila gas dikurung dalam wadah, partikel akan menyebabkan dan menggunakan tekanan gas yang diukur di atmosfir (atm) atau Pascal (1,0 Pa 1,0 Nm 2), gas tidak mengandung zat terlarut. Tekanan adalah forcearea yaitu efek dari semua tumbukan pada permukaan wadah. Tekanan gas disebabkan oleh kekuatan yang diciptakan oleh jutaan dampak partikel gas kecil individu di sisi wadah. Misalnya, jika jumlah partikel gas dalam wadah berlipat ganda, tekanan gasnya berlipat ganda karena dua kali lipat jumlah molekul melipatgandakan jumlah dampak pada sisi wadah sehingga kekuatan benturan total per satuan luas juga berlipat ganda. Dua kali lipat dari dampak partikel menggandakan tekanan digambarkan dalam dua diagram di bawah ini. Jika volume wadah tertutup rapat dijaga konstan dan gas di dalamnya dipanaskan sampai suhu yang lebih tinggi, tekanan gas akan meningkat. Alasan untuk ini adalah bahwa saat partikel dipanaskan, mereka mendapatkan energi kinetik dan bergerak rata-rata lebih cepat. Oleh karena itu mereka akan bertabrakan dengan sisi kontainer dengan kekuatan benturan yang lebih besar. Sehingga meningkatkan tekanan. Ada juga frekuensi tabrakan yang lebih besar dengan sisi wadah NAMUN ini merupakan faktor minor dibandingkan dengan efek peningkatan energi kinetik dan kenaikan rata-rata kekuatan benturan. Oleh karena itu sejumlah gas yang tetap dalam wadah tertutup dengan volume konstan, semakin tinggi suhu semakin besar tekanan dan semakin rendah suhu, semakin rendah tekanannya. Untuk perhitungan gas pressuretemperature lihat Bagian 2 Hukum CharlessGayLussacs Jika volume wadah dapat berubah, gas mudah berkembang pada pemanasan karena kurangnya daya tarik partikel, dan siap berkontraksi pada pendinginan. Pada pemanasan, partikel gas mendapatkan energi kinetik. Bergerak lebih cepat dan tekan sisi wadah lebih sering. Dan secara signifikan, mereka memukul dengan kekuatan yang lebih besar. Bergantung pada situasi kontainer, salah satu atau kedua tekanan atau volume akan meningkat (terbalik pada pendinginan). Catatan: Ini adalah volume gas yang mengembang TIDAK molekulnya, mereka tetap berukuran sama Jika tidak ada batasan volume, ekspansi pada pemanasan jauh lebih besar untuk gas daripada cairan dan padatan karena tidak ada daya tarik yang signifikan antara partikel gas. Energi kinetik rata-rata yang meningkat akan membuat tekanan gas meningkat dan gas akan mencoba untuk memperluas volume jika diizinkan untuk mis. Balon di ruangan yang hangat secara signifikan lebih besar dari balon yang sama di ruangan yang dingin Untuk perhitungan volumetemperatur gas lihat Bagian 2 Hukum CharlessGayLussacs DIFUSI DALAM Gas: Gerakan cepat dan acak alami partikel ke segala arah berarti bahwa gas mudah menyebar atau menyebar. Pergerakan bersih gas tertentu akan berada di arah dari konsentrasi rendah ke konsentrasi yang lebih tinggi, turunkan gradien difusi socalled. Di ffusi berlanjut sampai konsentrasi seragam di seluruh wadah gas, namun SEMUA partikel terus bergerak dengan energi kinetik yang pernah ada. Difusi lebih cepat terjadi pada gas daripada cairan dimana ada lebih banyak ruang bagi mereka untuk bergerak (percobaan yang digambarkan di bawah) dan difusi adalah Diabaikan dalam padatan karena pengepakan partikel yang dekat. Difusi bertanggung jawab atas penyebaran bau bahkan tanpa gangguan udara misalnya. Gunakan parfum, buka stoples kopi atau bau bensin di sekitar garasi. Laju difusi meningkat dengan kenaikan suhu saat partikel mendapatkan energi kinetik dan bergerak lebih cepat. Bukti lain untuk pergerakan partikel acak termasuk difusi. Ketika partikel asap dilihat di bawah mikroskop, mereka tampak menari saat diterangi sinar lampu pada suhu 90 o ke arah penayangan. Hal ini karena partikel asap muncul dengan memantulkan cahaya dan tarian karena jutaan hits acak dari molekul udara bergerak cepat. Ini disebut gerak Brown (lihat di bawah cairan). Pada waktu tertentu, hitnya tidak akan genap, jadi partikel asapnya bisa menjadi pukulan yang lebih besar secara acak. Percobaan difusi dua molekul gas diilustrasikan di atas dan dijelaskan di bawah Sebuah tabung kaca panjang (diameter 24 cm) diisi di salah satu ujungnya dengan steker kapas yang direndam dalam conc. Asam klorida disegel dengan karet bung (untuk kesehatan dan keselamatan) dan tabung dijaga tetap tenang, dijepit dalam posisi horizontal. Serangkaian conc yang serupa. Larutan amonia ditempatkan di ujung yang lain. Soket wol kapas yang dibasahi akan mengeluarkan asap HCl dan NH3 masing-masing, dan jika tabung dibiarkan tidak terganggu dan horizontal, meskipun tidak ada gerakan tabung, mis. Tidak bergetar untuk bercampur dan tidak adanya konveksi, awan putih terbentuk sekitar 1 3 rd sepanjang conc. Ujung tabung asam klorida. Penjelasan: Apa yang terjadi adalah gas tak berwarna, amonia dan hidrogen klorida, berdifusi ke dalam tabung dan bereaksi membentuk kristal putih halus dari garam amonium klorida. Ammonia hidrogen klorida gt amonium klorida NH 3 (g) HCl (g) gt NH 4 Cl (s) Perhatikan aturannya: Semakin kecil massa molekul, semakin besar kecepatan rata-rata molekul (tetapi semua gas memiliki energi kinetik rata-rata yang sama Pada suhu yang sama). Oleh karena itu semakin kecil massa molekulnya, semakin cepat gas berdenyut. misalnya M r (NH 3) 14 1x3 17. Bergerak lebih cepat dari M r (HCl) 1 35,5 36,5 DAN itulah mengapa mereka bertemu di dekat ujung HCl tabung Jadi percobaan tidak hanya merupakan bukti pergerakan molekul. Ini juga merupakan bukti bahwa molekul molekul yang berbeda bergerak dengan kecepatan berbeda. Untuk perawatan matematis lihat Grahams of the Difusion Sebuah gas berwarna, lebih berat dari pada udara (kepadatan lebih besar), dimasukkan ke dalam tabung gas paling bawah dan tabung gas kedua dari udara tanpa warna yang lebih rendah ditempatkan di atasnya dipisahkan dengan penutup kaca. Percobaan difusi harus tertutup pada suhu konstan untuk meminimalkan gangguan konveksi. Jika penutup kaca dilepaskan maka (i) gas udara yang tidak berwarna berdifusi ke dalam gas coklat berwarna dan (ii) bromin berdifusi ke udara. Gerakan partikel acak yang mengarah ke pencampuran tidak dapat terjadi karena konveksi karena gas yang lebih padat mulai dari bawah. Tidak ada guncangan atau sarana pencampuran lainnya yang diperlukan. Gerakan acak kedua partikel cukup untuk memastikan bahwa kedua gas akhirnya menjadi benar-benar dicampur oleh difusi (menyebar satu sama lain). Ini adalah bukti yang jelas untuk difusi karena pergerakan kontinu acak dari semua partikel gas dan, pada awalnya, pergerakan bersih satu jenis partikel dari yang lebih tinggi ke konsentrasi yang lebih rendah (menuruni gradien difusi). Bila dicampur penuh, tidak ada distribusi perubahan warna lebih lanjut yang diamati. TETAPI pergerakan partikel acak terus berlanjut. Lihat juga bukti lain di bagian cairan setelah model partikel untuk diagram difusi di bawah ini. Sebuah model partikel difusi dalam gas. Bayangkan gradien difusi dari kiri ke kanan untuk partikel hijau ditambahkan ke partikel biru di sebelah kiri. Jadi, untuk partikel hijau, migrasi bersih dari kiri ke kanan dan akan berlanjut, dalam wadah tertutup, sampai semua partikel merata dalam wadah gas (seperti yang digambarkan). Difusi lebih cepat dalam gas dibandingkan dengan larutan cair karena ada lebih banyak ruang di antara partikel untuk partikel lain bergerak secara acak. Bila padat dipanaskan partikelnya bergetar lebih kuat saat mereka mendapatkan energi kinetik dan kekuatan tarik partikel melemah. Akhirnya, pada titik lebur. Kekuatan yang menarik terlalu lemah untuk menahan partikel dalam struktur secara teratur dan dengan demikian padatannya meleleh. Perhatikan bahwa kekuatan antarmolekul masih ada untuk menahan cairan curah bersama-sama namun efeknya tidak cukup kuat untuk membentuk kisi kristal yang dipesan dari padatan. Partikel menjadi bebas untuk bergerak dan kehilangan pengaturan tertata. Energi dibutuhkan untuk mengatasi daya tarik dan memberi partikel energi kinetik getaran yang meningkat. Jadi panas diambil dari sekitarnya dan mencair adalah proses endotermik (916H ve). Perubahan energi untuk perubahan keadaan fisik ini untuk berbagai zat ditangani di bagian Catatan Energi. Dijelaskan menggunakan teori partikel kinetik cairan dan padatan Pada pendinginan, partikel cair kehilangan energi kinetik sehingga bisa menjadi lebih kuat tertarik satu sama lain. Bila suhu cukup rendah, energi kinetik partikel tidak cukup untuk mencegah kekuatan menarik partikel yang menyebabkan terbentuk kokoh. Akhirnya pada titik beku kekuatan daya tarik cukup untuk menghilangkan kebebasan gerakan yang tersisa (dalam hal satu tempat ke tempat lain) dan partikel berkumpul untuk membentuk susunan padat yang dipesan (walaupun partikelnya masih memiliki energi kinetik getaran. Harus dilepas ke sekelilingnya, sangat aneh seperti yang terlihat, pembekuan adalah proses eksotermik (916H) perubahan energi komparatif perubahan keadaan gas ltgt cair ltgt solid 2f (i) Kurva pendinginan. Apa yang terjadi pada suhu suatu zat. Jika didinginkan dari keadaan gas ke keadaan padat Perhatikan suhu tetap konstan selama perubahan keadaan kondensasi pada suhu Tc dan freezingsolidifying pada suhu Tf Hal ini karena semua energi panas dihilangkan pada pendinginan pada suhu ini (pemanasan laten Atau enthalpies of state change), memungkinkan penguatan kekuatan antarpartikel (ikatan antarmolekul) tanpa suhu turun. Kehilangan panas dikompensasikan. D oleh eksotermik meningkatkan daya tarik antarmolekul. Di antara bagian perubahan keadaan horisontal grafik, Anda dapat melihat pelepasan energi mengurangi energi kinetik partikel, menurunkan suhu zat. Lihat bagian 2. untuk penjelasan rinci tentang perubahan negara. Kurva pendinginan merangkum perubahan: Untuk setiap perubahan keadaan, energi harus dilepaskan. Dikenal sebagai laten panas. Nilai energi aktual untuk perubahan keadaan fisik ini untuk berbagai zat ditangani secara lebih rinci dalam Catatan Energi. 2f (ii) Kurva Pemanasan. Apa yang terjadi pada suhu suatu zat jika dipanaskan dari keadaan padat ke keadaan gas Perhatikan suhu tetap konstan selama perubahan keadaan pelelehan pada suhu Tm dan mendidih pada suhu Tb. Hal ini karena semua energi yang diserap dalam pemanasan pada suhu ini (pemanasan laten atau enthalpies perubahan keadaan), menyebabkan melemahnya kekuatan antarpartikel (ikatan antarmolekul) tanpa kenaikan suhu. Gain panas sama dengan energi diserap endothermicheat yang dibutuhkan untuk mengurangi kekuatan antarmolekul. . Di antara bagian perubahan keadaan horizontal pada grafik, Anda dapat melihat masukan energi meningkatkan energi kinetik partikel dan menaikkan suhu zat. Lihat bagian 2. untuk penjelasan rinci tentang perubahan negara. Kurva pemanasan merangkum perubahan: Untuk setiap perubahan keadaan, energi harus ditambahkan. Dikenal sebagai laten panas. Nilai energi aktual untuk perubahan keadaan fisik ini untuk berbagai zat ditangani secara lebih rinci dalam Catatan Energi. PANAS KHUSUS PANAS Panas laten untuk negara mengubah cairan padat ltgt disebut panas laten yang spesifik dari fusi (untuk pencairan atau pembekuan). Panas laten untuk negara mengubah gas ltgt cair disebut panas laten yang spesifik dari penguapan (untuk pengembunan, penguapan atau pendidihan) Untuk informasi lebih lanjut tentang panas laten, lihat catatan fisika saya tentang panas laten tertentu Dijelaskan dengan menggunakan teori partikel kinetik gas dan padatan Ini Adalah saat padatan, pada pemanasan, langsung berubah menjadi gas tanpa mencair, DAN gas pada pendinginan melakukan reformasi yang solid secara langsung tanpa terkondensasi pada cairan. Sublimasi biasanya hanya melibatkan perubahan fisik NAMUN tidak selalu sesederhana itu (lihat amonium klorida). Teori dalam hal partikel. Bila padat dipanaskan, partikel bergetar dengan kekuatan yang meningkat dari energi panas tambahan. Jika partikel memiliki cukup energi kinetik getaran untuk sebagian mengatasi kekuatan menarik particleparticle, Anda akan mengharapkan solid meleleh. NAMUN, jika partikel pada titik ini memiliki energi yang cukup pada titik ini yang akan menyebabkan mendidih, cairan TIDAK terbentuk dan padatan berubah langsung menjadi gas. Secara keseluruhan perubahan endotermik. Energi diserap dan dibawa masuk ke sistem. Pada pendinginan, partikel bergerak lebih lambat dan memiliki energi kinetik yang kurang. Akhirnya, bila energi kinetik partikel cukup rendah, maka akan memungkinkan kekuatan menarik particleparticle untuk menghasilkan cairan. NAMUN energi mungkin cukup rendah untuk memungkinkan pembentukan langsung dari padatan, yaitu partikel TIDAK memiliki cukup energi kinetik untuk mempertahankan keadaan cair Perubahan eksotermik keseluruhan. Energi dilepaskan dan diberikan ke sekitarnya. Bahkan pada suhu kamar botol kristal yodium padat terbentuk di bagian atas botol di atas yang padat. Pemanasan yang lebih hangat di laboratorium, semakin banyak kristal terbentuk saat mendingin di malam hari. Jika Anda dengan lembut memanaskan iodium dalam tabung reaksi, Anda akan melihat yodium dengan mudah luhur dan rekristalisasi di permukaan yang lebih dingin di dekat bagian atas tabung reaksi. Pembentukan bentuk beku tertentu melibatkan pembekuan langsung uap air (gas). Frost juga bisa menguap langsung kembali ke uap air (gas) dan ini terjadi pada musim dingin yang kering dan sangat dingin di Gurun Gobi pada hari yang cerah. H 2 O (s) H 2 O (g) (hanya perubahan fisik) Karbon padat dioksida (es kering) terbentuk pada pendinginan gas sampai kurang dari 78 o C. Pada pemanasan, perubahannya langsung berubah menjadi gas yang sangat dingin. Mengembunkan uap air di udara ke kabut, maka penggunaannya dalam efek panggung. CO 2 (s) CO 2 (g) (hanya perubahan fisik) Pada pemanasan dengan kuat pada tabung reaksi, amonium klorida padat putih. Terurai menjadi campuran dua gas amonia tak berwarna dan hidrogen klorida. Pada pendinginan reaksi dibalik dan perbaikan amonium klorida padat pada permukaan atas tabung uji yang lebih dingin. Amonium klorida energi panas amonia hidrogen klorida T ini melibatkan perubahan kimia dan fisik dan lebih rumit daripada contoh 1. sampai 3. Sebenarnya, kristal amonium klorida ionik berubah menjadi gas amonia dan hidrogen klorida kovalen yang secara alami jauh lebih mudah menguap ( Zat kovalen umumnya memiliki titik leleh dan titik didih yang jauh lebih rendah daripada zat ionik). Gambar partikel cair tidak terlihat di sini, namun model lainnya sepenuhnya berlaku terlepas dari perubahan keadaan yang melibatkan pembentukan cairan. Model partikel GAS dan model partikel SOLID link. HARAP DIPERHATIKAN, Pada tingkat studi yang lebih tinggi. Anda perlu mempelajari diagram fase gls untuk air dan kurva tekanan uap es pada suhu tertentu. Misalnya, jika tekanan uap ambien kurang dari tekanan uap ekuilibrium pada suhu es, sublimasi dapat dengan mudah terjadi. Salju dan es di daerah dingin Gurun Gobi tidak meleleh di Matahari, mereka perlahan-lahan lenyap lenyap 2 h. Lebih lanjut tentang perubahan panas dalam perubahan fisik negara Perubahan keadaan fisik yaitu gas ltgt cair ltgt padat juga disertai dengan perubahan energi. Untuk melelehkan zat padat, atau mendidih menguap cairan, energi panas harus diserap atau diambil dari sekitarnya, jadi ini adalah perubahan energi endotermik. Sistem dipanaskan untuk efek perubahan ini. Untuk mengembunkan gas, atau membekukan energi panas padat, harus dilepaskan atau diberikan ke sekitarnya, jadi ini adalah perubahan energi eksotermik. Sistem didinginkan untuk mempengaruhi perubahan ini. Secara umum, semakin besar kekuatan antar partikel, semakin besar energi yang dibutuhkan untuk mempengaruhi perubahan keadaan DAN semakin tinggi titik lebur dan titik didih. Perbandingan energi yang dibutuhkan untuk meleleh atau merebus berbagai jenis zat (Ini lebih untuk siswa tingkat lanjut) Perubahan energi panas yang terlibat dalam perubahan keadaan dapat dinyatakan dalam kJmol zat untuk perbandingan yang adil. Pada tabel di bawah ini 916H mencair adalah energi yang dibutuhkan untuk mencairkan 1 mol zat (rumus massa dalam g). 916H vap adalah energi yang dibutuhkan untuk menguap dengan penguapan atau perebusan 1 mol zat (rumus massa dalam g). Untuk molekul kovalen kecil sederhana, energi yang diserap oleh material relatif kecil untuk meleleh atau menguapkan zat dan semakin besar molekul semakin besar kekuatan antarmolekul. Kekuatan ini lemah dibandingkan dengan ikatan kimia yang menahan atom bersama dalam molekul itu sendiri. Energi yang relatif rendah dibutuhkan untuk meleleh atau mengosongkannya. Zat ini memiliki titik leleh dan titik didih yang relatif rendah. Untuk jaringan 3D berikat kuat mis. (iii) and a metal lattice of ions and free outer electrons ( m etallic bonding ), the structures are much stronger in a continuous way because of the continuous chemical bonding throughout the structure. Consequently, much greater energies are required to melt or vaporise the material. This is why they have so much higher melting points and boiling points. Type of bonding, structure and attractive forces operating Melting point K (Kelvin) o C 273 Energy needed to melt substance Boiling point K (Kelvin) o C 273 Energy needed to boil substance 3a. WHAT HAPPENS TO PARTICLES WHEN A SOLID DISSOLVES IN A LIQUID SOLVENT What do the words SOLVENT, SOLUTE and SOLUTION mean When a solid (the solute ) dissolves in a liquid (the solvent ) the resulting mixture is called a solution . In general: solute solvent gt solution So, the solute is what dissolves in a solvent, a solvent is a liquid that dissolves things and the solution is the result of dissolving something in a solvent. The solid loses all its regular structure and the individual solid particles (molecules or ions) are now completely free from each other and randomly mix with the original liquid particles, and all particles can move around at random. This describes salt dissolving in water, sugar dissolving in tea or wax dissolving in a hydrocarbon solvent like white spirit. It does not usually involve a chemical reaction, so it is generally an example of a physical change . Whatever the changes in volume of the solid liquid, compared to the final solution, the Law of Conservation of Mass still applies. This means: mass of solid solute mass of liquid solvent mass of solution after mixing and dissolving. You cannot create mass or lose mass . but just change the mass of substances into another form. If the solvent is evaporated . then the solid is reformed e.g. if a salt solution is left out for a long time or gently heated to speed things up, eventually salt crystals form, the process is called crystallisation . 3b. WHAT HAPPENS TO PARTICLES WHEN TWO LIQUIDS COMPLETELY MIX WITH EACH OTHER WHAT DOES THE WORD MISCIBLE MEAN Using the particle model to explain miscible liquids. If two liquids completely mix in terms of their particles, they are called miscible liquids because they fully dissolve in each other. This is shown in the diagram below where the particles completely mix and move at random. The process can be reversed by fractional distillation . 3c. WHAT HAPPENS TO PARTICLES WHEN TWO LIQUIDS DO NOT MIX WITH EACH OTHER WHAT DOES THE WORD IMMISCIBLE MEAN WHY DO THE LIQUIDS NOT MIX Using the particle model to explain immiscible liquids. If the two liquids do NOT mix . they form two separate layers and are known as immiscible liquids, illustrated in the diagram below where the lower purple liquid will be more dense than the upper layer of the green liquid. You can separate these two liquids using a separating funnel . The reason for this is that the interaction between the molecules of one of the liquids alone is stronger than the interaction between the two different molecules of the different liquids. For example, the force of attraction between water molecules is much greater than either oiloil molecules or oilwater molecules, so two separate layers form because the water molecules, in terms of energy change, are favoured by sticking together. 3d. How a separating funnel is used 1. The mixture is put in the separating funnel with the stopper on and the tap closed and the layers left to settle out. 2. The stopper is removed, and the tap is opened so that you can carefully run the lower grey layer off first into a beaker. 3. The tap is then closed again, leaving behind the upper yellow layer liquid, so separating the two immiscible liquids. Appendix 1 some SIMPLE particle pictures of ELEMENTS, COMPOUNDS and MIXTURES GCSEIGCSE multiple choice QUIZ on states of matter gases, liquids amp solids Some easy basic exercises from KS3 science QCA 7G quotParticle model of solids, liquids and gasesquot Multiple Choice Questions for Science revision on gases, liquids and solids particle models, properties, explaining the differences between them. See also for gas calculations gcse chemistry revision free detailed notes on states of matter to help revise igcse chemistry igcse chemistry revision notes on states of matter O level chemistry revision free detailed notes on states of matter to help revise gcse chemistry free detailed notes on states of matter to help revise O level chemistry free online website to help revise states of matter for gcse chemistry free online website to help revise states of matter for igcse chemistry free online website to help revise O level states of matter chemistry how to succeed in questions on states of matter for gcse chemistry how to succeed at igcse chemistry how to succeed at O level chemistry a good website for free questions on states of matter to help to pass gcse chemistry questions on states of matter a good website for free help to pass igcse chemistry with revision notes on states of matter a good website for free help to pass O level chemistry what are the three states of matter draw a diagram of the particle model diagram of a gas, particle theory of a gas, draw a particle model diagram of a liquid, particle theory of a liquid, draw a particle model diagram of a solid, particle theory of a solid, what is diffusion why can you have diffusion in gases and liquids but not in solids what are the limitations of the particle model of a gas liquid or solid how to use the particle model to explain the properties of a gas, what causes gas pressure how to use the particle model to explain the properties of a solid, how to use the particle model to explain the properties of a solid, why is a gas easily compressed but difficult to compress a liquid or solid how do we use the particle model to explain changes of state explaining melting with the particle model, explaining boiling with the particle model, explaining evaporation using the particle model, explaining condensing using the particle model, explaining freezing with the particle model, how do you read a thermometer wor king out the state of a substance at a particular temperature given its melting point and boiling point, how to draw a cooling curve, how to draw a heating curve, how to explain heatingcooling curves in terms of state changes and latent heat, what is sublimation what substances sublime explaining endothermic and exothermic energy changes of state, using the particle model to explain miscible and immiscible liquids GASES, LIQUIDS, SOLIDS, States of Matter, particle models, theory of state changes, melting, boiling, evaporation, condensing, freezing, solidifying, cooling curves, 1.1 Three states of matter: 1.1a gases, 1.1b liquids, 1.1c solids 2. State changes: 2a evaporation and boiling, 2b condensation, 2c distillation, 2d melting, 2e freezing, 2f cooling and heating curves and relative energy changes, 2g sublimation 3. Dissolving, solutions. miscibleimmiscible liquids Boiling Boiling point Brownian motion Changes of state Condensing Cooling curve Diffusion Dissolving Evaporation Freezing Freezing point Gas particle picture Heating curve Liquid particle picture Melting Melting point miscibleimmiscible liquids Properties of gases Properties of liquids Properties of solids solutions sublimation Solid particle picture GCSEIGCSE multiple choice QUIZ on states of matter gases liquids solids practice revision questions Revision notes on particle models and properties of gases, liquids and solids KS4 Science GCSEIGCSEO level Chemistry Information on particle models and properties of gases, liquids and solids for revising for AQA GCSE Science, Edexcel Science chemistry IGCSE Chemistry notes on particle models and properties of gases, liquids and solids OCR 21st Century Science, OCR Gateway Science notes on particle models and properties of gases, liquids and solids WJEC gcse science chemistry notes on particl e models and properties of gases, liquids and solids CIE O Level chemistry CIE IGCSE chemistry notes on particle models and properties of gases, liquids and solids CCEACEA gcse science chemistry (revise courses equal to US grade 8, grade 9 grade 10) science chemistry courses revision guides explanation chemical equations for particle models and properties of gases, liquids and solids educational videos on particle models and properties of gases, liquids and solids guidebooks for revising particle models and properties of gases, liquids and solids textbooks on particle models and properties of gases, liquids and solids state changes amp particle model for AQA AS chemistry, state changes amp particle model for Edexcel A level AS chemistry, state changes amp particle model for A level OCR AS chemistry A, state changes amp particle model for OCR Salters AS chemistry B, state changes amp particle model for AQA A level chemistry, state changes amp particle model for A level Edexcel A level c hemistry, state changes amp particle model for OCR A level chemistry A, state changes amp particle model for A level OCR Salters A level chemistry B state changes amp particle model for US Honours grade 11 grade 12 state changes amp particle model for pre-university chemistry courses pre-university A level revision notes for state changes amp particle model A level guide notes on state changes amp particle model for schools colleges academies science course tutors images pictures diagrams for state changes amp particle model A level chemistry revision notes on state changes amp particle model for revising module topics notes to help on understanding of state changes amp particle model university courses in science careers in science jobs in the industry laboratory assistant apprenticeships technical internships USA US grade 11 grade 11 AQA A level chemistry notes on state changes amp particle model Edexcel A level chemistry notes on state changes amp particle model for OCR A level chem istry notes WJEC A level chemistry notes on state changes amp particle model CCEACEA A level chemistry notes on state changes amp particle model for university entrance examinations describe some limitations of the particle model for gases, liquids and solidsComputational tools Analogously, DataFrame has a method cov to compute pairwise covariances among the series in the DataFrame, also excluding NAnull values. Dengan asumsi data yang hilang hilang secara acak, ini menghasilkan perkiraan matriks kovariansi yang tidak bias. Namun, untuk banyak aplikasi perkiraan ini mungkin tidak dapat diterima karena matriks kovariansi yang diperkirakan tidak dijamin bersifat semi-pasti positif. Hal ini dapat menyebabkan korelasi yang diperkirakan memiliki nilai absolut yang lebih besar dari satu, dan atau matriks kovariansi yang tidak dapat dibalik. Lihat Estimasi matriks kovarian untuk lebih jelasnya. DataFrame.cov juga mendukung kata kunci minperiod opsional yang menentukan jumlah pengamatan minimum yang diperlukan untuk setiap pasangan kolom agar memiliki hasil yang valid. Bobot yang digunakan di jendela ditentukan oleh kata kunci wintype. Daftar tipe yang dikenali adalah: boxcar triang blackman hamming bartlett parzen bohman blackmanharris nuttall barthann kaiser (kebutuhan beta) gaussian (kebutuhan std) generalgausia (butuh daya, lebar) slepian (kebutuhan lebar). Perhatikan bahwa jendela boxcar setara dengan mean (). Untuk beberapa fungsi windowing, parameter tambahan harus ditentukan: Untuk .sum () dengan wintype. Tidak ada normalisasi yang dilakukan pada bobot jendela. Melewati bobot kebiasaan 1, 1, 1 akan menghasilkan hasil yang berbeda dari pada bobot yang di atas 2, 2, 2. misalnya. Ketika melewati sebuah wintype dan bukan secara eksplisit menentukan bobotnya, bobotnya sudah dinormalisasi sehingga bobot terbesar adalah 1. Sebaliknya, sifat perhitungan .mean () adalah sedemikian rupa sehingga bobotnya dinormalisasi satu sama lain. Bobot 1, 1, 1 dan 2, 2, 2 menghasilkan hasil yang sama. Time-aware Rolling New di versi 0.19.0. Baru di versi 0.19.0 adalah kemampuan untuk melewatkan offset (atau konversi) ke metode .rolling () dan memilikinya menghasilkan jendela berukuran variabel berdasarkan jendela waktu yang berlalu. Untuk setiap titik waktu, ini mencakup semua nilai sebelumnya yang terjadi dalam delta waktu yang ditunjukkan. Ini bisa sangat berguna untuk indeks frekuensi waktu non-reguler. Ini adalah indeks frekuensi reguler. Menggunakan parameter jendela integer bekerja untuk memutar sepanjang frekuensi jendela. Menentukan offset memungkinkan spesifikasi frekuensi rolling yang lebih intuitif. Menggunakan indeks non-reguler, namun masih monoton, bergulir dengan jendela integer tidak memberikan perhitungan khusus. Menggunakan spesifikasi waktu menghasilkan jendela variabel untuk data yang jarang ini. Selanjutnya, sekarang kami mengizinkan parameter opsional untuk menentukan kolom (bukan default indeks) di DataFrame. Time-aware Rolling vs. Resampling Menggunakan .rolling () dengan indeks berbasis waktu sangat mirip dengan resampling. Mereka berdua mengoperasikan dan melakukan operasi reduktif pada objek panda yang diindeks dengan waktu. Bila menggunakan .rolling () dengan offset. Offset adalah waktu-delta. Ambil jendela belakang mundur, dan agregat semua nilai di jendela itu (termasuk titik akhir, tapi bukan titik awal). Ini adalah nilai baru pada saat itu hasilnya. Ini adalah jendela berukuran variabel dalam ruang waktu untuk setiap titik masukan. Anda akan mendapatkan hasil ukuran yang sama seperti input. Bila menggunakan .resample () dengan offset. Buatlah indeks baru yang merupakan frekuensi offset. Untuk setiap bin frekuensi, titik agregat dari input dalam jendela mencari mundur yang pada waktu itu berada dalam bin itu. Hasil agregasi ini adalah output untuk titik frekuensi tersebut. Jendela adalah ukuran ukuran tetap di ruang frekuensi. Hasil Anda akan memiliki bentuk frekuensi reguler antara min dan max dari objek masukan asli. Untuk meringkas. Rolling () adalah operasi jendela berbasis waktu, sementara .resample () adalah operasi jendela berbasis frekuensi. Memusatkan Windows Secara default label disetel ke tepi kanan jendela, namun kata kunci tengah tersedia sehingga labelnya dapat disetel di tengahnya. Fungsi Binary Window cov () dan corr () dapat menghitung statistik window bergerak sekitar dua Series atau kombinasi DataFrameSeries atau DataFrameDataFrame. Inilah perilaku dalam setiap kasus: dua Seri. Hitung statistik untuk pemasangan. DataFrameSeries. Hitung statistik untuk setiap kolom DataFrame dengan Seri yang dilewati, sehingga mengembalikan DataFrame. DataFrameDataFrame. Secara default hitung statistik untuk mencocokkan nama kolom, mengembalikan DataFrame. Jika kata kunci argumen pairwiseTrue dilewatkan maka hitung statistik untuk setiap pasangan kolom, mengembalikan Panel yang itemnya adalah tanggal yang dimaksud (lihat bagian selanjutnya). Computing rolling pairwise covariances and correlations In financial data analysis and other fields it8217s common to compute covariance and correlation matrices for a collection of time series. Seringkali seseorang juga tertarik pada kovarians bergerak-jendela dan matriks korelasi. Hal ini dapat dilakukan dengan melewatkan argumen kata kunci berpasangan, yang jika input DataFrame akan menghasilkan Panel yang itemnya adalah tanggal yang dimaksud. Dalam kasus argumen DataFrame tunggal argumen berpasangan bahkan dapat diabaikan: Nilai yang hilang diabaikan dan setiap entri dihitung dengan menggunakan pengamatan lengkap berpasangan. Silakan lihat bagian kovarian untuk peringatan yang terkait dengan metode penghitungan kovarians dan matriks korelasi ini. Selain tidak memiliki parameter jendela, fungsi ini memiliki antarmuka yang sama dengan rekan mereka .rolling. Seperti di atas, parameter yang mereka terima adalah: minperiods. Ambang data non-null diperlukan. Default ke minimum yang dibutuhkan untuk menghitung statistik. Tidak ada NaN yang akan menjadi output setelah titik data non-null minperiod terlihat. pusat. Boolean, apakah untuk mengatur label di bagian tengah (default adalah False) Output dari metode .rolling dan .expanding tidak mengembalikan NaN jika setidaknya ada nilai minperiods non-null di jendela aktif. Ini berbeda dari cumsum. Cumprod Cummax Dan cummin. Yang mengembalikan NaN ke output dimanapun NaN ditemui di input. Statistik jendela yang meluas akan lebih stabil (dan kurang responsif) daripada penggabungan window rolling karena meningkatnya ukuran jendela akan mengurangi dampak relatif dari titik data individual. Sebagai contoh, berikut ini adalah mean () output untuk dataset seri waktu sebelumnya: Windows yang tertimbang secara eksponensial Satu set fungsi yang terkait adalah versi tertimbang secara eksponensial dari beberapa statistik di atas. Antarmuka yang serupa dengan .rolling dan .expanding diakses melalui metode .ewm untuk menerima objek EWM. A number of expanding EW (exponentially weighted) methods are provided:
Jepang-yen-options-trading
Online-trading-in-commodity-in-india