Rata-rata pergerakan rata-rata tertimbang

Rata-rata pergerakan rata-rata tertimbang

Online-trading-expo-new-york
Options-trading-practice
Turtles-trading-system-free


Arti-of-option-trading Mma-forex-dubai-news Sistem perdagangan-pixelmon Option-trading-jargon Online-trading-academy-student-lobby-login Options-trading-buy-to-open

3 Memahami Tingkat dan Metode Perkiraan Anda dapat menghasilkan prakiraan prakiraan dan ringkasan (item tunggal) detail dan perkiraan (yang mencerminkan produk) yang mencerminkan pola permintaan produk. Sistem ini menganalisis penjualan masa lalu untuk menghitung perkiraan dengan menggunakan 12 metode peramalan. Perkiraan tersebut mencakup informasi detail pada tingkat item dan informasi tingkat tinggi tentang cabang atau perusahaan secara keseluruhan. 3.1 Kriteria Evaluasi Kinerja Perkiraan Tergantung pada pemilihan opsi pemrosesan dan tren dan pola dalam data penjualan, beberapa metode peramalan berperforma lebih baik daripada yang lain untuk kumpulan data historis tertentu. Metode peramalan yang sesuai untuk satu produk mungkin tidak sesuai untuk produk lain. Anda mungkin menemukan bahwa metode peramalan yang memberikan hasil bagus pada satu tahap siklus hidup produk tetap sesuai sepanjang keseluruhan siklus hidup. Anda dapat memilih antara dua metode untuk mengevaluasi kinerja metode peramalan saat ini: Persentase akurasi (POA). Mean absolute deviation (MAD). Kedua metode evaluasi kinerja ini memerlukan data penjualan historis untuk periode yang Anda tentukan. Periode ini disebut periode holdout atau periode yang paling sesuai. Data dalam periode ini digunakan sebagai dasar untuk merekomendasikan metode peramalan yang akan digunakan dalam membuat perkiraan proyeksi berikutnya. Rekomendasi ini khusus untuk setiap produk dan dapat berubah dari satu perkiraan generasi ke generasi berikutnya. 3.1.1 Fit Terbaik Sistem merekomendasikan ramalan yang paling sesuai dengan menerapkan metode peramalan yang dipilih ke riwayat pesanan penjualan terakhir dan membandingkan perkiraan simulasi dengan sejarah sebenarnya. Bila Anda menghasilkan ramalan yang paling sesuai, sistem ini membandingkan riwayat penjualan aktual dengan perkiraan untuk jangka waktu tertentu dan menghitung seberapa akurat setiap metode peramalan yang berbeda memprediksi penjualan. Kemudian sistem merekomendasikan ramalan paling akurat sebagai yang paling sesuai. Grafik ini menggambarkan prakiraan terbaik: Gambar 3-1 Ramalan sesuai terbaik Sistem menggunakan urutan langkah-langkah ini untuk menentukan kecocokan terbaik: Gunakan setiap metode yang ditentukan untuk mensimulasikan perkiraan periode holdout. Bandingkan penjualan aktual dengan perkiraan simulasi untuk periode holdout. Hitung POA atau MAD untuk menentukan metode peramalan mana yang paling sesuai dengan penjualan aktual sebelumnya. Sistem ini menggunakan POA atau MAD, berdasarkan pilihan pemrosesan yang Anda pilih. Merekomendasikan ramalan yang paling sesuai dengan POA yang paling dekat dengan 100 persen (di atas atau di bawah) atau MAD yang paling dekat dengan nol. 3.2 Metode Peramalan JD Edwards EnterpriseOne Forecast Management menggunakan 12 metode untuk peramalan kuantitatif dan menunjukkan metode mana yang paling sesuai untuk situasi peramalan. Bagian ini membahas: Metode 1: Persen sepanjang tahun lalu. Metode 2: Perhitungan Persentase Lebih dari Tahun Lalu. Metode 3: Tahun Terakhir sampai Tahun Ini. Metode 4: Moving Average. Metode 5: Pendekatan Linier. Metode 6: Regresi Kuadrat Terkecil. Metode 7: Pendekatan Gelar Kedua. Metode 8: Metode Fleksibel. Metode 9: Rata-rata Bergerak Tertimbang. Metode 10: Linear Smoothing. Metode 11: Eksponensial Smoothing. Metode 12: Exponential Smoothing dengan Trend dan Seasonality. Tentukan metode yang ingin Anda gunakan dalam opsi pemrosesan untuk program Prakiraan Generasi (R34650). Sebagian besar metode ini memberikan kontrol terbatas. Misalnya, bobot yang ditempatkan pada data historis terkini atau rentang tanggal data historis yang digunakan dalam perhitungan dapat ditentukan oleh Anda. Contoh dalam panduan ini menunjukkan prosedur perhitungan untuk masing-masing metode peramalan yang ada, dengan data set identik. Contoh metode dalam panduan menggunakan sebagian atau seluruh kumpulan data ini, yaitu data historis dari dua tahun terakhir. Proyeksi proyeksi masuk ke tahun depan. Data penjualan data ini stabil dengan kenaikan musiman kecil di bulan Juli dan Desember. Pola ini merupakan karakteristik dari produk dewasa yang mungkin mendekati keusangan. 3.2.1 Metode 1: Persen Selama Tahun Terakhir Metode ini menggunakan rumus Persen Selama Tahun Terakhir untuk melipatgandakan setiap periode perkiraan dengan persentase kenaikan atau penurunan yang ditentukan. Untuk meramalkan permintaan, metode ini memerlukan jumlah periode yang paling sesuai ditambah satu tahun riwayat penjualan. Metode ini berguna untuk meramalkan permintaan barang musiman dengan pertumbuhan atau penurunan. 3.2.1.1 Contoh: Metode 1: Persen Selama Tahun Terakhir Rumus Persen Selama Tahun Lalu mengalikan data penjualan dari tahun sebelumnya dengan faktor yang Anda tentukan dan kemudian proyek yang dihasilkan selama tahun depan. Metode ini mungkin berguna dalam penganggaran untuk mensimulasikan pengaruh tingkat pertumbuhan tertentu atau ketika riwayat penjualan memiliki komponen musiman yang signifikan. Perkiraan ramalan: Faktor perkalian. Misalnya, tentukan 110 dalam opsi pemrosesan untuk meningkatkan data riwayat penjualan tahun sebelumnya sebesar 10 persen. Diperlukan riwayat penjualan: Satu tahun untuk menghitung perkiraan, ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai) yang Anda tentukan. Tabel ini adalah sejarah yang digunakan dalam perhitungan ramalan: Ramalan Februari sama dengan 117 kali 1.1 128,7 dibulatkan menjadi 129. Prakiraan bulan Maret sama dengan 115 kali 1,1 126,5 dibulatkan menjadi 127. 3.2.2 Metode 2: Perhitungan Persen Selama Tahun Lalu Metode ini menggunakan Perhitungan yang Dihitung Formula Tahun Terakhir untuk membandingkan penjualan masa lalu periode tertentu dengan penjualan dari periode yang sama tahun sebelumnya. Sistem menentukan persentase kenaikan atau penurunan, dan kemudian mengalikan setiap periode dengan persentase untuk menentukan perkiraan. Untuk meramalkan permintaan, metode ini membutuhkan jumlah periode riwayat pesanan penjualan ditambah satu tahun riwayat penjualan. Metode ini berguna untuk meramalkan permintaan jangka pendek untuk item musiman dengan pertumbuhan atau penurunan. 3.2.2.1 Contoh: Metode 2: Perhitungan Persentase Selama Tahun Lalu Rumusan Perhitungan Selama Rumus Terakhir mengalikan data penjualan dari tahun sebelumnya dengan faktor yang dihitung oleh sistem, dan kemudian proyek tersebut akan menghasilkan tahun depan. Metode ini mungkin berguna dalam memproyeksikan pengaruh perluasan tingkat pertumbuhan baru-baru ini untuk produk ke tahun depan sambil mempertahankan pola musiman yang ada dalam riwayat penjualan. Perkiraan spesifikasi: Rentang sejarah penjualan yang digunakan dalam menghitung tingkat pertumbuhan. Misalnya, tentukan n sama dengan 4 dalam opsi pemrosesan untuk membandingkan riwayat penjualan selama empat periode terakhir sampai empat periode yang sama tahun sebelumnya. Gunakan rasio yang dihitung untuk membuat proyeksi untuk tahun depan. Diperlukan riwayat penjualan: Satu tahun untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan, dengan perkiraan n 4: Februari sama dengan 117 kali 0,9766 114,26 dibulatkan menjadi 114. Prakiraan bulan Maret sama dengan 115 kali 0,9766 112,31 dibulatkan menjadi 112. 3.2.3 Metode 3: Tahun lalu sampai tahun ini Metode ini menggunakan Penjualan tahun lalu untuk ramalan tahun depan. Untuk meramalkan permintaan, metode ini membutuhkan jumlah periode yang paling sesuai ditambah satu tahun sejarah pesanan penjualan. Metode ini berguna untuk meramalkan permintaan produk dewasa dengan tingkat permintaan atau permintaan musiman tanpa tren. 3.2.3.1 Contoh: Metode 3: Tahun Lalu sampai Tahun Ini Formula Tahun Lalu sampai Tahun Ini mengcopy data penjualan dari tahun sebelumnya sampai tahun depan. Metode ini mungkin berguna dalam penganggaran untuk mensimulasikan penjualan pada tingkat sekarang. Produknya sudah matang dan tidak memiliki tren dalam jangka panjang, namun pola permintaan musiman yang signifikan mungkin ada. Perkiraan spesifikasi: Tidak ada. Diperlukan riwayat penjualan: Satu tahun untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: Prakiraan Januari sama dengan bulan Januari tahun lalu dengan perkiraan nilai sebesar 128. Prakiraan Februari sama dengan bulan Februari tahun lalu dengan nilai perkiraan sebesar 117. Perkiraan Maret sama dengan bulan Maret tahun lalu dengan perkiraan nilai 115. 3.2.4 Metode 4: Moving Average Metode ini menggunakan rumus Moving Average rata-rata jumlah periode yang ditentukan untuk diproyeksikan pada periode berikutnya. Anda harus menghitung ulangnya sesering mungkin (bulanan, atau setidaknya tiga bulanan) untuk mencerminkan tingkat permintaan yang berubah. Untuk meramalkan permintaan, metode ini membutuhkan jumlah periode yang paling sesuai dengan jumlah periode sejarah pesanan penjualan. Metode ini berguna untuk meramalkan permintaan terhadap produk dewasa tanpa tren. 3.2.4.1 Contoh: Metode 4: Moving Average Moving Average (MA) adalah metode populer untuk merata-ratakan hasil dari riwayat penjualan terakhir untuk menentukan proyeksi untuk jangka pendek. Metode perkiraan MA tertinggal dari tren. Prakiraan bias dan kesalahan sistematis terjadi ketika sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk yang berada dalam tahap pertumbuhan atau keusangan dari siklus hidup. Perkiraan spesifikasi: n sama dengan jumlah periode riwayat penjualan yang digunakan dalam perhitungan perkiraan. Sebagai contoh, tentukan n 4 dalam opsi pemrosesan untuk menggunakan empat periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Nilai yang besar untuk n (seperti 12) memerlukan lebih banyak riwayat penjualan. Ini menghasilkan perkiraan yang stabil, namun lamban untuk mengenali pergeseran tingkat penjualan. Sebaliknya, nilai kecil untuk n (seperti 3) lebih cepat merespons perubahan tingkat penjualan, namun perkiraan tersebut mungkin berfluktuasi secara luas sehingga produksi tidak dapat merespons variasinya. Riwayat penjualan yang disyaratkan: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi perkiraan kinerja (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: perkiraan Februari sama dengan (114 119 137 125) 4 123.75 dibulatkan menjadi 124. Prakiraan bulan Maret sama dengan (119 137 125 124) 4 126,25 dibulatkan menjadi 126. 3.2.5 Metode 5: Pendekatan Linier Metode ini Menggunakan rumus Pendekatan Linier untuk menghitung tren dari jumlah periode sejarah pesanan penjualan dan memproyeksikan tren ini ke perkiraan. Anda harus menghitung ulang tren setiap bulan untuk mendeteksi perubahan tren. Metode ini memerlukan jumlah periode yang paling sesuai dan jumlah periode riwayat penjualan yang ditentukan. Metode ini berguna untuk meramalkan permintaan akan produk baru, atau produk dengan tren positif atau negatif yang konsisten yang bukan karena fluktuasi musiman. 3.2.5.1 Contoh: Metode 5: Pendekatan Linier Linear Approximation menghitung tren yang didasarkan pada dua titik data penjualan historis. Kedua titik tersebut menentukan garis lurus yang diproyeksikan ke masa depan. Gunakan metode ini dengan hati-hati karena ramalan jarak jauh diimbangi oleh perubahan kecil hanya dalam dua titik data. Perkiraan spesifikasi: n sama dengan titik data dalam sejarah penjualan yang dibandingkan dengan titik data terkini untuk mengidentifikasi tren. Misalnya, tentukan n 4 untuk menggunakan selisih antara Desember (data terbaru) dan Agustus (empat periode sebelum Desember) sebagai dasar perhitungan tren. Riwayat penjualan wajib minimum: n ditambah 1 ditambah dengan jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan ramalan: ramalan Januari Desember tahun lalu 1 (Tren) yang sama dengan 137 (1 kali 2) 139. Februari meramalkan Desember tahun lalu 1 (Tren) yang sama dengan 137 (2 kali 2) 141. Maret meramalkan Desember tahun lalu 1 (Tren) yang sama dengan 137 (3 kali 2) 143. 3.2.6 Metode 6: Regresi Kuadrat Terkecil Metode Regresi Kuadrat Terkecil (LSR) menghasilkan persamaan yang menggambarkan hubungan garis lurus antara data penjualan historis Dan berlalunya waktu. LSR sesuai dengan garis pada rentang data yang dipilih sehingga jumlah kuadrat perbedaan antara titik data penjualan aktual dan garis regresi diminimalkan. Perkiraan tersebut merupakan proyeksi dari garis lurus ini ke masa depan. Metode ini memerlukan riwayat data penjualan untuk periode yang diwakili oleh jumlah periode yang paling sesuai dan jumlah periode data historis yang ditentukan. Persyaratan minimum adalah dua titik data historis. Metode ini berguna untuk meramalkan permintaan ketika terjadi trend linear pada data. 3.2.6.1 Contoh: Metode 6: regresi linier regresi kuadrat terkecil, atau regresi kuadrat terkecil (LSR), adalah metode yang paling populer untuk mengidentifikasi tren linier dalam data penjualan historis. Metode ini menghitung nilai a dan b yang akan digunakan dalam rumus: Persamaan ini menggambarkan garis lurus, dimana Y mewakili penjualan dan X mewakili waktu. Regresi linier lambat untuk mengenali titik balik dan pergeseran fungsi fungsi dalam permintaan. Regresi linier sesuai dengan garis lurus ke data, bahkan saat data musiman atau lebih baik dijelaskan oleh kurva. Bila data riwayat penjualan mengikuti kurva atau memiliki pola musiman yang kuat, prakiraan bias dan kesalahan sistematis terjadi. Perkiraan spesifikasi: n sama dengan periode sejarah penjualan yang akan digunakan dalam menghitung nilai a dan b. Sebagai contoh, tentukan n 4 untuk menggunakan sejarah dari bulan September sampai Desember sebagai dasar perhitungannya. Bila data tersedia, n yang lebih besar (seperti n 24) biasanya akan digunakan. LSR mendefinisikan sebuah garis untuk sedikitnya dua titik data. Untuk contoh ini, nilai kecil untuk n (n 4) dipilih untuk mengurangi perhitungan manual yang diperlukan untuk memverifikasi hasilnya. Riwayat penjualan wajib minimum: n periode ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: Prakiraan bulan Maret sama dengan 119,5 (7 kali 2,3) 135,6 dibulatkan menjadi 136. 3.2.7 Metode 7: Pendekatan Tingkat Dua Untuk memproyeksikan ramalan, metode ini menggunakan rumus Pendekatan Derajat Kelipatan untuk merencanakan kurva Yang didasarkan pada jumlah periode riwayat penjualan. Metode ini membutuhkan jumlah periode yang paling sesuai ditambah jumlah periode sejarah penjualan tiga kali lipat. Metode ini tidak berguna untuk meramalkan permintaan untuk jangka waktu yang panjang. 3.2.7.1 Contoh: Metode 7: Pendekatan Derajat Kelima Regresi Linier menentukan nilai a dan b dalam rumus ramalan Y a b X dengan tujuan untuk menyesuaikan garis lurus dengan data riwayat penjualan. Pendekatan Gelar Kedua serupa, namun metode ini menentukan nilai a, b, dan c dalam rumus perkiraan ini: Y a b X c X 2 Tujuan metode ini adalah menyesuaikan kurva dengan data riwayat penjualan. Metode ini berguna bila suatu produk berada dalam masa transisi antara tahap siklus hidup. Misalnya, ketika produk baru bergerak dari pengenalan tahap pertumbuhan, tren penjualan mungkin akan meningkat. Karena istilah orde kedua, ramalan dapat dengan cepat mendekati tak terhingga atau turun menjadi nol (tergantung pada apakah koefisien c positif atau negatif). Metode ini berguna hanya dalam jangka pendek. Perkiraan spesifikasi: rumus menemukan a, b, dan c agar sesuai dengan kurva dengan tepat tiga titik. Anda tentukan n, jumlah periode waktu data untuk menumpuk ke masing-masing dari tiga titik. Dalam contoh ini, n 3. Data penjualan aktual untuk bulan April sampai Juni digabungkan menjadi poin pertama, Q1. Juli sampai September ditambahkan bersama untuk menciptakan Q2, dan Oktober sampai Desember ke Q3. Kurva dipasang pada tiga nilai Q1, Q2, dan Q3. Riwayat penjualan yang disyaratkan: 3 kali n periode untuk menghitung perkiraan ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mei) (Jun) yang sama dengan 125 122 137 384 Q2 (Jul) (Agustus) (Sep) yang sama dengan 140 129 131 400 Q3 (Okt) (Nov) (Des) yang sama dengan 114 119 137 370 Langkah selanjutnya melibatkan penghitungan ketiga koefisien a, b, dan c yang akan digunakan dalam rumus peramalan Y ab X c X 2. Q1, Q2, dan Q3 disajikan pada grafik, di mana waktu diplot pada sumbu horizontal. Q1 mewakili total penjualan historis untuk bulan April, Mei, dan Juni dan diplot pada X 1 Q2 sesuai dengan bulan Juli sampai September Q3 sesuai dengan bulan Oktober sampai Desember dan Q4 yang merupakan Januari sampai Maret. Grafik ini menggambarkan perencanaan Q1, Q2, Q3, dan Q4 untuk aproksimasi tingkat kedua: Gambar 3-2 Merencanakan Q1, Q2, Q3, dan Q4 untuk pendekatan tingkat dua Tiga persamaan menggambarkan tiga titik pada grafik: (1) Q1 A bX cX 2 dimana X 1 (Q1 abc) (2) Q2 a bX cX 2 dimana X 2 (Q2 a 2b 4c) (3) Q3 a bX cX 2 dimana X 3 (Q3 a 3b 9c) Selesaikan tiga persamaan secara simultan Untuk menemukan b, a, dan c: Kurangi persamaan 1 (1) dari persamaan 2 (2) dan atasi untuk b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ganti persamaan ini untuk B ke persamaan (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Akhirnya, ganti persamaan ini untuk a dan b ke persamaan (1): (1) Q3 ndash (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 Metode Pendekatan Derajat Gelar Kedua menghitung a, b, dan c sebagai berikut: Q3 ndash 3 (Q2 ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 nda Sh 384) ndash (3 kali ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 Ini adalah perhitungan perkiraan aproksimasi tingkat kedua: Y a bX cX 2 322 85X (ndash23) (X 2) Bila X 4, Q4 322 340 ndash 368 294. Perkiraan sama dengan 294 3 98 per periode. Bila X 5, Q5 322 425 ndash 575 172. Prakiraan sama dengan 172 3 58,33 dibulatkan menjadi 57 per periode. Bila X 6, Q6 322 510 ndash 828 4. Prakiraan sama dengan 4 3 1,33 dibulatkan menjadi 1 per periode. Ini adalah ramalan untuk tahun depan, Tahun Lalu sampai Tahun Ini: 3.2.8 Metode 8: Metode Fleksibel Dengan metode ini Anda dapat memilih jumlah periode penjualan terbaik yang paling sesuai yang dimulai n bulan sebelum tanggal mulai perkiraan, dan untuk Menerapkan persentase kenaikan atau penurunan faktor perkalian untuk memodifikasi perkiraan. Metode ini mirip dengan Metode 1, Persen Sepanjang Tahun Terakhir, kecuali bahwa Anda dapat menentukan jumlah periode yang Anda gunakan sebagai basis. Bergantung pada pilihan yang Anda pilih sebagai n, metode ini memerlukan waktu yang paling sesuai dengan jumlah periode data penjualan yang ditunjukkan. Metode ini berguna untuk meramalkan permintaan akan tren yang direncanakan. 3.2.8.1 Contoh: Metode 8: Metode Fleksibel Metode Fleksibel (Persen Lebih dari 10 Bulan Sebelumnya) serupa dengan Metode 1, Persen Sepanjang Tahun Lalu. Kedua metode tersebut melipatgandakan data penjualan dari periode waktu sebelumnya dengan faktor yang ditentukan oleh Anda, dan kemudian memproyeksikan hasilnya ke masa depan. Dalam metode Percent Over Last Year, proyeksi didasarkan pada data dari periode waktu yang sama tahun sebelumnya. Anda juga dapat menggunakan Metode Fleksibel untuk menentukan jangka waktu, selain periode yang sama tahun lalu, untuk digunakan sebagai dasar perhitungan. Faktor perkalian Misalnya, tentukan 110 dalam opsi pemrosesan untuk meningkatkan data riwayat penjualan sebelumnya sebesar 10 persen. Periode dasar Sebagai contoh, n 4 menyebabkan perkiraan pertama berdasarkan data penjualan pada bulan September tahun lalu. Riwayat penjualan wajib minimum: jumlah periode kembali ke periode dasar ditambah dengan jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: 3.2.9 Metode 9: Rata-rata Bergerak Rata-rata Rumus Rata-rata Bergerak Rata-rata serupa dengan Metode 4, Rumus Bergerak Rata-rata, karena rata-rata mencatat riwayat penjualan bulan sebelumnya untuk memproyeksikan riwayat penjualan bulan berikutnya. Namun, dengan formula ini Anda dapat menetapkan bobot untuk masing-masing periode sebelumnya. Metode ini membutuhkan jumlah periode tertimbang yang dipilih ditambah jumlah periode data yang paling sesuai. Mirip dengan Moving Average, metode ini tertinggal dari tren permintaan, jadi metode ini tidak disarankan untuk produk dengan tren atau musiman yang kuat. Metode ini berguna untuk meramalkan permintaan terhadap produk dewasa dengan permintaan yang relatif tinggi. 3.2.9.1 Contoh: Metode 9: Rata-rata Bergerak Rata-rata Metode Weighted Moving Average (WMA) mirip dengan Metode 4, Moving Average (MA). Namun, Anda dapat menetapkan bobot yang tidak sama dengan data historis saat menggunakan WMA. Metode ini menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Data yang lebih baru biasanya diberi bobot lebih besar dari data yang lebih tua, jadi WMA lebih responsif terhadap perubahan tingkat penjualan. Namun, prakiraan bias dan kesalahan sistematis terjadi ketika sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. Jumlah periode riwayat penjualan (n) untuk digunakan dalam perhitungan perkiraan. Sebagai contoh, tentukan n 4 dalam opsi pemrosesan untuk menggunakan empat periode terakhir sebagai dasar proyeksi ke periode waktu berikutnya. Nilai yang besar untuk n (seperti 12) memerlukan lebih banyak riwayat penjualan. Nilai tersebut menghasilkan perkiraan yang stabil, namun lambat untuk mengenali pergeseran tingkat penjualan. Sebaliknya, nilai kecil untuk n (seperti 3) merespons lebih cepat terhadap pergeseran tingkat penjualan, namun ramalannya mungkin berfluktuasi secara luas sehingga produksi tidak dapat merespons variasinya. Jumlah periode untuk opsi pemrosesan rdquo14 - periode untuk includerdquo tidak boleh melebihi 12 bulan. Bobot yang ditugaskan pada masing-masing periode data historis. Bobot yang ditugaskan harus berjumlah 1,00. Misalnya, ketika n 4, tetapkan bobot 0,50, 0,25, 0,15, dan 0,10 dengan data terbaru yang menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: Ramalan Januari sama dengan (131 kali 0,10) (114 kali 0,15) (119 kali 0,25) (137 kali 0,50) (0,10 0,15 0,25 0,50) 128,45 dibulatkan menjadi 128. Prakiraan Februari sama dengan (114 kali 0,10) (137 kali 0,15) (128 kali 0,50) 1 127,5 dibulatkan ke 128. Prakiraan bulan Maret sama dengan 119 kali 0,10 (137 kali 0,15) (128 kali 0,25) (128 kali 0,50) 1 128,45 dibulatkan ke 128. 3.2.10 Metode 10: Linear Smoothing Metode ini menghitung rata-rata tertimbang data penjualan terakhir. Dalam perhitungan, metode ini menggunakan jumlah periode sejarah pesanan penjualan (dari 1 sampai 12) yang ditunjukkan dalam opsi pemrosesan. Sistem ini menggunakan kemajuan matematis untuk menimbang data dalam rentang dari yang pertama (bobot paling rendah) sampai akhir (berat paling banyak). Kemudian sistem memproyeksikan informasi ini ke setiap periode dalam perkiraan. Metode ini membutuhkan waktu yang paling sesuai untuk bulan dan riwayat penjualan untuk jumlah periode yang ditentukan dalam opsi pemrosesan. 3.2.10.1 Contoh: Metode 10: Linear Smoothing Metode ini mirip dengan Metode 9, WMA. Namun, alih-alih menugaskan bobot secara sewenang-wenang ke data historis, formula digunakan untuk menetapkan bobot yang menurun secara linier dan jumlahnya menjadi 1,00. Metode ini kemudian menghitung rata-rata tertimbang penjualan akhir-akhir ini untuk mencapai proyeksi untuk jangka pendek. Seperti semua teknik peramalan rata-rata bergerak linear, prakiraan bias dan kesalahan sistematis terjadi saat sejarah penjualan produk menunjukkan tren yang kuat atau pola musiman. Metode ini bekerja lebih baik untuk perkiraan perkiraan pendek produk dewasa daripada produk pada tahap pertumbuhan atau keusangan dari siklus hidup. N sama dengan jumlah periode sejarah penjualan yang digunakan dalam perhitungan perkiraan. Misalnya, tentukan n sama dengan 4 dalam opsi pemrosesan untuk menggunakan empat periode terbaru sebagai dasar proyeksi ke periode waktu berikutnya. Sistem secara otomatis memberikan bobot pada data historis yang menurun secara linear dan jumlahnya menjadi 1,00. Misalnya, bila n sama dengan 4, sistem menetapkan bobot 0,4, 0,3, 0,2, dan 0,1, dengan data terbaru yang menerima bobot terbesar. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: 3.2.11 Metode 11: Exponential Smoothing Metode ini menghitung rata-rata merapikan, yang menjadi perkiraan yang mewakili tingkat penjualan umum selama periode data historis yang dipilih. Metode ini memerlukan riwayat data penjualan untuk jangka waktu yang diwakili oleh jumlah periode yang paling sesuai ditambah jumlah periode data historis yang ditentukan. Persyaratan minimum adalah dua periode data historis. Metode ini berguna untuk meramalkan permintaan bila tidak ada trend linear dalam data. 3.2.11.1 Contoh: Metode 11: Exponential Smoothing Metode ini mirip dengan Metode 10, Linear Smoothing. Dalam Linear Smoothing, sistem memberikan bobot yang menurun secara linear ke data historis. Dalam Exponential Smoothing, sistem memberikan bobot yang secara eksponensial membusuk. Persamaan untuk peramalan Exponential Smoothing adalah: Forecast alpha (Penjualan Aktual Sebelumnya) (1 ndashalpha) (Prakiraan Sebelumnya) Prakiraan adalah rata-rata tertimbang dari penjualan aktual dari periode sebelumnya dan perkiraan dari periode sebelumnya. Alpha adalah bobot yang diaplikasikan pada penjualan aktual untuk periode sebelumnya. (1 ndash alpha) adalah bobot yang diterapkan pada ramalan untuk periode sebelumnya. Nilai untuk rentang alpha dari 0 sampai 1 dan biasanya turun antara 0,1 dan 0,4. Jumlah bobot adalah 1.00 (alpha (1 ndash alpha) 1). Anda harus menetapkan nilai untuk smoothing constant, alpha. Jika Anda tidak menetapkan nilai untuk konstanta pemulusan, sistem menghitung nilai asumsi yang didasarkan pada jumlah periode riwayat penjualan yang ditentukan dalam opsi pemrosesan. Alpha sama dengan konstanta pemulusan yang digunakan untuk menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai untuk rentang alfa dari 0 sampai 1. n sama dengan kisaran data riwayat penjualan yang disertakan dalam perhitungan. Umumnya, satu tahun data penjualan data sudah cukup untuk memperkirakan tingkat penjualan secara umum. Untuk contoh ini, nilai kecil untuk n (n 4) dipilih untuk mengurangi perhitungan manual yang diperlukan untuk memverifikasi hasilnya. Exponential Smoothing dapat menghasilkan perkiraan yang didasarkan pada sedikit data historis. Riwayat penjualan wajib minimum: n ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Tabel ini adalah sejarah yang digunakan dalam perhitungan perkiraan: 3.2.12 Metode 12: Exponential Smoothing dengan Trend dan Seasonality Metode ini menghitung tren, indeks musiman, dan rata-rata merapikan secara eksponensial dari riwayat penjualan. Sistem ini kemudian menerapkan proyeksi kecenderungan perkiraan dan penyesuaian indeks musiman. Metode ini memerlukan jumlah periode yang paling sesuai dan dua tahun data penjualan, dan berguna untuk item yang memiliki tren dan musiman dalam perkiraan. Anda bisa memasukkan faktor alpha dan beta, atau sistem menghitungnya. Faktor Alpha dan beta adalah konstanta pemulusan yang digunakan sistem untuk menghitung rata-rata smoothed untuk tingkat umum atau besarnya penjualan (alfa) dan komponen tren ramalan (beta). 3.2.12.1 Contoh: Metode 12: Exponential Smoothing dengan Trend dan Seasonality Metode ini mirip dengan Metode 11, Exponential Smoothing, dengan rata-rata penghalusan dihitung. Namun, Metode 12 juga mencakup sebuah istilah dalam persamaan peramalan untuk menghitung tren yang merapikan. Perkiraan tersebut terdiri dari rata-rata merapikan yang disesuaikan dengan tren linier. Bila ditentukan dalam opsi pengolahan, ramalan juga disesuaikan untuk musiman. Alfa sama dengan konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk tingkat umum atau besarnya penjualan. Nilai untuk rentang alfa dari 0 sampai 1. Beta sama dengan konstanta pemulusan yang digunakan dalam menghitung rata-rata merapikan untuk komponen tren perkiraan. Nilai untuk rentang beta dari 0 sampai 1. Apakah indeks musiman diterapkan pada perkiraan. Alpha dan beta tidak tergantung satu sama lain. Mereka tidak perlu jumlah untuk 1,0. Riwayat penjualan wajib minimum: Satu tahun ditambah jumlah periode waktu yang diperlukan untuk mengevaluasi kinerja perkiraan (periode yang paling sesuai). Bila data historis dua tahun atau lebih tersedia, sistem tersebut menggunakan data dua tahun dalam perhitungan. Metode 12 menggunakan dua persamaan Eksponensial Smoothing dan satu rata-rata sederhana untuk menghitung rata-rata merapikan, tren merapikan, dan indeks musiman rata-rata sederhana. Rata-rata merapikan secara eksponensial: Tren eksponensial yang eksponensial: Indeks musiman rata-rata sederhana: Gambar 3-3 Indeks Rata-Rata Rata-Rata Rata-rata Perkiraan dihitung dengan menggunakan hasil dari tiga persamaan: L adalah panjang musim (L sama dengan 12 bulan atau 52 minggu). T adalah periode waktu sekarang. M adalah jumlah periode waktu ke masa depan perkiraan. S adalah faktor penyesuaian musiman multiplikatif yang diindeks pada jangka waktu yang sesuai. Tabel ini mencantumkan riwayat yang digunakan dalam perhitungan perkiraan: Bagian ini memberikan ikhtisar Evaluasi Prakiraan dan membahas: Anda dapat memilih metode peramalan untuk menghasilkan sebanyak 12 perkiraan untuk setiap produk. Setiap metode peramalan mungkin membuat proyeksi yang sedikit berbeda. Bila ribuan produk diperkirakan, keputusan subjektif tidak praktis mengenai perkiraan mana yang akan digunakan dalam rencana setiap produk. Sistem secara otomatis mengevaluasi kinerja setiap metode peramalan yang Anda pilih dan untuk setiap produk yang Anda ramalkan. Anda dapat memilih antara dua kriteria kinerja: MAD dan POA. MAD adalah ukuran kesalahan perkiraan. POA adalah ukuran prakiraan bias. Kedua teknik evaluasi kinerja ini memerlukan data riwayat penjualan aktual untuk periode yang ditentukan oleh Anda. Periode sejarah terkini yang digunakan untuk evaluasi disebut periode holdout atau periode yang paling sesuai. Untuk mengukur kinerja metode peramalan, sistem: Menggunakan rumus ramalan untuk mensimulasikan perkiraan periode penyimpanan historis. Membuat perbandingan antara data penjualan aktual dan perkiraan simulasi untuk periode holdout. Bila Anda memilih beberapa metode perkiraan, proses yang sama terjadi untuk setiap metode. Beberapa prakiraan dihitung untuk periode holdout dan dibandingkan dengan riwayat penjualan yang diketahui untuk periode yang sama. Metode peramalan yang menghasilkan kecocokan terbaik (paling sesuai) antara perkiraan dan penjualan aktual selama periode holdout direkomendasikan untuk digunakan dalam rencana. Rekomendasi ini khusus untuk setiap produk dan mungkin berubah setiap kali Anda membuat perkiraan. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) adalah mean (atau rata-rata) dari nilai absolut (atau besarnya) dari penyimpangan (atau kesalahan) antara data aktual dan perkiraan. MAD adalah ukuran dari besaran rata-rata kesalahan yang diharapkan, dengan metode peramalan dan riwayat data. Karena nilai absolut yang digunakan dalam perhitungan, kesalahan positif tidak membatalkan kesalahan negatif. Saat membandingkan beberapa metode peramalan, yang dengan MAD terkecil adalah produk yang paling andal untuk periode holdout tersebut. Bila perkiraan tidak bias dan kesalahan terdistribusi normal, ada hubungan matematis sederhana antara MAD dan dua ukuran distribusi umum lainnya, yaitu standar deviasi dan Mean Squared Error. Sebagai contoh: MAD (Sigma (Aktual) ndash (Forecast)) n Standar Deviasi, (sigma) cong 1,25 MAD Mean Squared Error cong ndashsigma2 Contoh ini menunjukkan perhitungan MAD untuk dua metode peramalan. Contoh ini mengasumsikan bahwa Anda telah menentukan dalam opsi pemrosesan bahwa periode periode holdout (periode paling sesuai) sama dengan lima periode. 3.3.1.1 Metode 1: Tahun Terakhir sampai Tahun Ini Tabel ini adalah riwayat yang digunakan dalam perhitungan MAD, mengingat Periode Fit Terbaik 5: Deviasi Absolut Rata-rata sama dengan (2 1 20 10 14) 5 9.4. Berdasarkan dua pilihan ini, metode Moving Average, n 4 direkomendasikan karena memiliki MAD yang lebih kecil, 9,4, untuk periode holdout yang diberikan. 3.3.2 Persen Akurasi Persen Akurasi (POA) adalah ukuran prakiraan bias. Bila prakiraan konsisten terlalu tinggi, persediaan terakumulasi dan biaya persediaan meningkat. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. Dalam layanan, besarnya kesalahan perkiraan biasanya lebih penting daripada perkiraan bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.Weighted Average BREAKING DOWN Weighted Average A weighted average is most often computed with respect to the frequency of the values in a data set. Rata-rata tertimbang dapat dihitung dengan cara yang berbeda, namun, jika nilai tertentu dalam kumpulan data lebih penting untuk alasan selain frekuensi terjadinya. Perhitungan Rata-rata Tertimbang Investor sering menyusun posisi dalam saham selama beberapa tahun. Harga saham berubah setiap hari, jadi sulit untuk melacak biaya berdasarkan akumulasi saham selama periode tahun-tahun yang akan datang. Jika seorang investor ingin menghitung rata-rata tertimbang dari harga saham yang dia bayar untuk saham tersebut, dia harus melipatgandakan jumlah saham yang diperoleh pada setiap harga dengan harga tersebut, menambahkan nilai tersebut dan kemudian membagi total nilai dengan jumlah saham . Misalnya, seorang investor mengakuisisi 100 saham perusahaan pada tahun 1 di 10 dan 50 saham perusahaan yang sama di tahun 2 di 40. Untuk mendapatkan rata-rata tertimbang dari harga yang harus dibayar, investor mengalikan 100 saham dengan 10 untuk Tahun 1, 50 saham oleh 40 untuk tahun 2, dan kemudian menambahkan hasilnya untuk mendapatkan nilai total 3.000. Investor membagi jumlah total saham yang dibayarkan, 3.000 dalam kasus ini, dengan jumlah saham yang diperoleh selama dua tahun, 150, untuk mendapatkan harga rata-rata tertimbang yang dibayar sebesar 20 kali. Rata-rata ini diboboti dengan jumlah saham Diperoleh pada setiap harga dan bukan hanya harga absolut. Contoh Rata-rata tertimbang Rata-rata tertimbang muncul di banyak bidang keuangan disamping harga beli saham termasuk pengembalian portofolio, akuntansi persediaan dan penilaian. Jika dana yang memiliki sekuritas sekuritas, naik 10 pada tahun ini, 10 tersebut merupakan rata-rata tertimbang pengembalian dana untuk nilai masing-masing posisi dalam dana tersebut. Untuk akuntansi persediaan, nilai rata-rata tertimbang dari persediaan menyumbang fluktuasi harga komoditas, misalnya, sementara metode LIFO atau FIFO memberi nilai lebih pada waktu daripada nilai. Ketika mengevaluasi perusahaan untuk mengetahui apakah saham mereka benar harga, investor menggunakan biaya rata-rata tertimbang modal (WACC) untuk mendiskontokan arus kas perusahaan. WACC is weighted based on the market value of debt and equity in a companys capital structure.Forecasting seasonals and trends by exponentially weighted moving averages The paper provides a systematic development of the forecasting expressions for exponential weighted moving averages. Methods for series with no trend, or additive or multiplicative trend are examined. Similarly, the methods cover non-seasonal, and seasonal series with additive or multiplicative error structures. The paper is a reprinted version of the 1957 report to the Office of Naval Research (ONR 52) and is being published here to provide greater accessibility. Exponential smoothing Forecasting Local seasonals Local trends Copyright copy 2004 Published by Elsevier B.V. Biography: Charles C. HOLT is Professor of Management Emeritus at the Graduate School of Business, University of Texas at Austin. His current research is on quantitative decision methods, decision support systems, and financial forecasting. Previously he has done research and teaching at M.I.T. Carnegie Mellon University, the London School of Economics, the University of Wisconsin, and the Urban Institute. He has been active in computer applications since 1947, and has done research on automatic control, the simulation of economic systems, scheduling production, employment and inventories, and the dynamics of inflation and unemployment.
Vanguard-trading-card-game-online-free
Options-trading-books-recommended